Smart wells optimization with history matching

سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 780

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICHEC07_627

تاریخ نمایه سازی: 25 فروردین 1394

چکیده مقاله:

Smart wells are wells that have down hole instrumentation, such as sensors and valves, on the production tubing. These wells provide the ability for both down hole monitoring and control. Down hole monitoring can be achieved through the use of sensors while control is realized with down hole valves. Once a smart well is deployed, valves can be used to independently control each segment / branch of the well in a reactive mode, such as shutting off a zone once it startsproducing water, or in a defensive mode, which requires the a priori determination of valve settings. Using the latter approach, which is the method applied in this work, valve settings are determined through an optimization procedure. We show with this procedure that wellinstrumentation can provide over 50% gain in cumulative oil recovery over the instrumented case for systems considered here in which the geology is assumed to be known. Because the geology isnot known in real applications, we couple the valve optimization procedure with history matchingtechniques, in which we use idealized sensor data to update the reservoir description. Up to 90% of the gain attainable with known geology is achieved for the unconditionally and conditionally generated models considered. In addition, we show that it is beneficial to use multiple historymatchedmodels for the optimization in some cases. This is because multiple history-matched models capture the geologic uncertainty better than single history-matched models. We also introduce efficient alternative procedures to improve the speed of the overall technique. These include the use of a Levenberg-Marquardt algorithm for the optimizations

کلیدواژه ها:

نویسندگان

Mehdi faramarzi

The member of college faculty-Chemical engineering group, Islamic azad university branch of gachsaran, Iran

Esmaeil jafari

B.S.C student of petroleum engineering, Islamic azad university branch of gachsaran, Iran

Pooriya soleimani

B.S.C student of petroleum engineering, Islamic azad university branch of gachsaran, Iran

Ghazaleh shakeri

B.S.C student of petroleum engineering, Islamic azad university branch of gachsaran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :