Applying mean shift and motion detection approaches to hand tracking in sign language
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 2، شماره: 1
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 586
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-2-1_003
تاریخ نمایه سازی: 9 اسفند 1393
چکیده مقاله:
Hand gesture recognition is very important to communicate in a sign language. In this paper, an effective object tracking and the hand gesture recognition method is proposed. This method is a combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on a color, then when hand passes the face occlusion happens. Several solutions such as the particle filter, kalman filter and dynamic programming tracking have been used, but they are complicated, time consuming and so expensive. The proposed method is so easy, fast, efficient and low costly. The motion detection algorithm in the first step subtracts the previous frame from the current frame to obtain the changes between two images and white pixels (motion level) are detected by using the threshold level. Then the mean shift algorithm is applied for tracking the hand motion. Simulation results show that this method is faster than two times compared with the old common algorithms
کلیدواژه ها:
نویسندگان
m.m hosseini
Islamic Azad University, Shahrood branch, Shahroodt, Iran.
j hassanian
Islamic Azad University, Shahrood branch, Shahroodt, Iran.