Outlier detection in wireless sensor networks using distributed principalcomponent analysis
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 1، شماره: 1
سال انتشار: 1391
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 913
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-1-1_001
تاریخ نمایه سازی: 9 اسفند 1393
چکیده مقاله:
Outlier detection is an important task for intrusion detection and fault diagnosis in wireless sensor networks(WSNs). Outliers in sensed data may be caused due to compromised or malfunctioning sensor nodes. In thispaper, we propose a centralized and a distributed approach based on the principal component analysis (PCA)for outlier detection in WSNs. In the distributed approach, we partition the network into multiple groups ofsensor nodes. Each group has a group head and several member nodes. Every member node uses a fixedwidthclustering algorithm and sends a description of its local sensed data to the group head. The group headthen applies a distributed PCA to establish a global normal pattern and detect outliers. This pattern is periodicallyupdated using weighted coefficients. We compare the performance of the centralized and distributedapproaches based on the real sensed data collected by 54 Mica2Dot sensors deployed in Intel Berkeley ResearchLab. The experimental results show that the distributed approach reduces both communication overheadand energy consumption, while achieving comparable accuracy.
کلیدواژه ها:
نویسندگان
a Ahmadi Livani
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
m abadi
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
m alikhani
Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran