A Review on Similarity Measurement Methods inTrust-based Recommender Systems

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,143

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ECDC08_086

تاریخ نمایه سازی: 6 آذر 1393

چکیده مقاله:

These days, due to growing the e-commerce sites, access to information about items is easier than past. But because of huge amount of information, we need new filteringtechniques to find interested information faster and more accurate. Therefore Recommender Systems (RS) introduced for solving this problem. Although several recommender approaches have proposed, Collaborative Filtering (CF) approaches are the most successful ones. These approaches use historical behaviors of users for making recommendation. Next generation of CF, called Trust-based CF, use social relations and activities for measuring trust between users. One important step in these approaches is measuring the similarity between users, which affect recommendation results. Therefore variety methods for this reason have been proposed. In this paper, we will review and categorize the measurement methods. We will also analyze the methods to identify their characteristics, benefits and drawbacks.

نویسندگان

Morteza Ghorbani Moghaddam

Faculty of Computer science University Putra Malaysia (UPM)

Mustapha Norwati

Faculty of Computer science University Putra Malaysia (UPM)

Aida Mustapha

Faculty of Computer science University Putra Malaysia (UPM

Anousheh Elahian

Faculty of Information Technology Virtual University of Shiraz (VUS) Shiraz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • K. Punyavathi and P. Jyothi, _ _ ommendation Techniques to ...
  • J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez, "Recommender ...
  • _ _ _ _ _ Syst, Dec. 2013. ...
  • J. Golbeck, "Generating predictive movie rec ommendations from trust in ...
  • _ _ _ 2007, pp. 17-24. ...
  • _ _ _ _ _ Conference on Fuzzy Systems and ...
  • M. G. Moghaddam, N. Mustapha, A. Mustapha, N. Mohd Sharef, ...
  • S. Ray and A. Mahanti, "Improving Prediction Accuracy in Trust- ...
  • P. M. U. Shardanand, :Social information filtering: algorithms for automating ...
  • J. L. Herlocker, J. A. Konstan, A. Borchers, and J. ...
  • M. Jamali and M Ester, "TrustWalker a random walk model ...
  • H. J. Ahn, :A new similarity measure for collaborative filtering ...
  • H. G. G. Koutrica, B. Bercovitz, ":FlexRecs: expressing and combining ...
  • H. Liu, Z. Hu, A. Mian, _ Tian, and X. ...
  • V. F. F. Cacheda, V. Carneiro, D. Fernandez, "Comparison of ...
  • نمایش کامل مراجع