Bridge Health Monitoring Using Two Stage Neural Networks
محل انتشار: هشتمین کنگره ملی مهندسی عمران
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,584
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCCE08_0408
تاریخ نمایه سازی: 5 مهر 1393
چکیده مقاله:
In this paper a method for damage identification in bridges employing neural networks is presented. In this work, in order to increase the speed and reduce the computational error for damage detection a newtwo stage method is introduced. In the first stage the damages are localized using a radial basis functionneural network which has the benefit of high learning speed. In the second stage, the exact location and severity of damaged elements found using a well-trained back propagation neural network which possesses high powerful learning capacity. In order to evaluate the proposed method Louisville trussbridge in United States of America is modeled by a finite element program and then changes in the responses is analyzed using MATLAB neural networks toolbox. Numerical results demonstrate the efficiency of the proposed method for correct damage identification
کلیدواژه ها:
نویسندگان
Omid Rasouli
Lecturer, Department of Civil Engineering, Miyaneh Faculty of Engineering, Miyaneh, Iran
Eysa Salajegheh
Professor, Department of Civil Engineering, University of Kerman, Kerman, Iran
Seyed Sadegh Naseralavi
Assistant Professor, Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
Ali Kameli
Assistant Professor, Department of Industrial Engineering, Miyaneh Faculty of Engineering, Miyaneh, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :