A Modified Benders Decomposition Approach for Supply Chain Network Design with Risk Consideration
محل انتشار: دهمین کنفرانس بین المللی مهندسی صنایع
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,399
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IIEC10_250
تاریخ نمایه سازی: 10 شهریور 1393
چکیده مقاله:
In today’s competitive business environment, the design and management of supply chain network is one of the most important challenges that managers encounter.The supply chain network should be designed such that the customer demands satisfy and the total system costs minimize. This paper presents a multi-period multi-stage supply chain network design problem under demand uncertainty. The problem is formulated as a two-stage stochastic program. In the first-stage, strategic location decisions are made, while the second-stage contains the operational decisions. In our developed model, ConditionalValue-at-Risk (CVaR) as an effective risk measure is used to produce first-stage decisions in which the loss cost in the second-stage is to be minimized. In addition, a modified Benders’ decomposition approach is developed to solve the model exactly. In addition, the performance of the proposed algorithm in terms of the solution quality is evaluated on aset of randomly generated problem instances.
کلیدواژه ها:
Supply chain network design ، Uncertain demand ، Two-stage stochastic programming ، Benders decomposition ، Conditional Value-at-Risk
نویسندگان
Nima Hamta
Department of Industrial Engineering Amirkabir University of Technology Tehran, Iran
Mohammad Fattahi
Department of Industrial Engineering Amirkabir University of Technology Tehran, Iran
Mohsen Akbarpour Shirazi
Department of Industrial Engineering Amirkabir University of Technology Tehran, Iran
Behrooz Karimi
Department of Industrial Engineering Amirkabir University of Technology Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :