Controlling Sustainability of Aquatic Ecosystems:Application of Genetic Programming
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 877
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCAU01_3162
تاریخ نمایه سازی: 29 تیر 1393
چکیده مقاله:
Maintaining a harmonic balance between both human and ecosystem water demands is one of the ultimate goals of water resources managers. The first step to meet that goal is to construct a quantitative connection between ecology and water quantity-quality model. In this study, a data mining approach: Genetic Programming (GP) was utilized to generate a quantitative relationship between an ecological target index based on benthic macroinvertebrates and physicochemical water quality indicators. The dataset used in this study included seasonal water quality parameters and number of benthic macroinvertebrates per square meter of Jajrood River located in North-East of Tehran, Iran, from September 2011 to May 2013. Among different forms of equations obtained from GP, the one with the most compatibility of the computed versus observed ecological index was selected. Using GUI-HDMR software, a variance based sensitivity analysis was implemented in order to rank the importance of input parameters and to explore the influence of parameter interactions. This approach can help water resources managers to improve the downstream benthic macroinvertebrates habitat as a reflection of ecosystem health just based on the available information of physicochemical water quality parameters.
کلیدواژه ها:
نویسندگان
Nasser Heydari
Graduate Student, School of Civil Engineering, College of Engineering, University of Tehran,Tehran, Iran,
Banafsheh Zahraie
Associate Professor, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran,
Hamed Yazdian
Ph.D. Candidate, School of Civil Engineering, College of Engineering, University of Tehran,Tehran, Iran,
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :