Automatic detection of city lungs using aerial images and LiDAR data for a better policy-making in urban sustainable development

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 882

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICCAU01_3148

تاریخ نمایه سازی: 29 تیر 1393

چکیده مقاله:

Detection and extraction of objects in complex city scenes are challenging matters in many fields which are strongly in associate with an urban sustainable development. On this basis, detection of trees as city lungs plays an important role to get urban planners goals. In this paper, trees have been detected automatically in complex city scenes using an adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering based FIS. In this regard, the proposed ANFIS was trained by a hybrid learning algorithm. Accordingly, input data are features that are extracted from aerial images and LiDAR data. There are three test areas to check and evaluate efficiency of the proposed method. Evaluating the proposed methodology over the three different areas of Vaihingen in Germany achieved acceptable results in detecting trees in complex city scenes, in which in Area1, Area2, and Area3, the correctly detected features were 68.98, 78.78, and 69.80 percent, respectively.

نویسندگان

s Talebi

Civil Engineering Faculty, Tafresh State University, Tafresh, Iran

p Pahlavani

Center of Excellence in Geomatic Eng. in Disaster Management, Dept. of Surveying and Geomatic Eng., College of Eng., University of Tehran, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Cramer, M. The DGPF test on digital aerial camera evaluation ...
  • Nelson, Bruce N. Automatic vehicle detection in infrared imagery using ...
  • Lashkia, V. Defect detection in X-ray images using fuzzy reasoning. ...
  • Jang, J.S.R., Sun, C.T., & Mizutani, E. Neuro-Fuzzy and soft ...
  • International Conference _ Civil Engineering Architecture & Urban Sustainable Development ...
  • Sabzevari, R., Masoumzadeh, S. & Ghahroudi, M. R. Employing ANFIS ...
  • Sharma, M. Artificial Neural Network Fuzzy Inference System (ANFIS) For ...
  • Karishma Bhardwaj, Palvinder Singh Mann. Adaptive Neuro-Fuzzy Inference System (ANFIS) ...
  • Somya Saxena, Sunil Kumar, Vijay Kumar Sharma. Edge Detection Using ...
  • Ike Turkme. Efficient impulse noise detection method with ANFIS for ...
  • V. Saradhadevi, Dr.V. Sundaram. An Enhanced Two-Stage Impulse Noise Removal ...
  • P. R. Tamiselvi. Effective Segmentation Approaches for Renal Calculi Segmentation. ...
  • Fang, Yuchun, Tieniu Tan, and Yunhong Wang. Fusion of global ...
  • D.Naga Jyothi. Multi-View Technique for 3-D Robotic Object Recognition System ...
  • Seyed Mohsen Zabihi, Hamid Reza Pourreza, and Touka Banaee. Vessel ...
  • Rupinderpal Singh, Pankaj Sapra, Varsha Verma. An Advanced Technique of ...
  • H. Aref, M. Hahn. A Morphological Reconstruction Algorithm for Separating ...
  • Spreckels, V., Syrek, L, Schlienkamp, A. DGPF project: evaluation of ...
  • Rutzinger, M., Rottensteiner, F. Pfeifer, N. A comparison of evaluation ...
  • نمایش کامل مراجع