Segmentation of brain tumors in MRI images using multi-resolution hidden Markov models based on Ridgelet features
محل انتشار: شانزدهمین کنفرانس دانشجویی مهندسی برق ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,076
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISCEE16_393
تاریخ نمایه سازی: 21 تیر 1393
چکیده مقاله:
Accurate segmentation of brain tumors is ofimportance with respect to diagnosis, treatment planning andmonitoring. Several automatic and semi-automatic methodshave been proposed to tackle the problem. Variations of HiddenMarkov Models have been extensively used in this regard.Individual models are usually assigned to represent differenttissues. To consider intensity variations, compensation methodshave been employed as pre-processing step. In this paper, weemploy HMM models to automatically segment brain tissuesincluding tumors in MRI datasets. We assume a random texturefor brain tissues to cope with texture variations and use a newfeature set so as to train HMM models. The employed featuresets are both robust against noise and rotation-invariant.
کلیدواژه ها:
Brain tumor ، Image segmentation ، Magnetic resonance Imaging (MRI) ، Ridgelet Transform ، Hidden Markov Model (HMM)
نویسندگان
Iman Kalantari
Department of Electrical Engineering ,Iran University of science and Technology, Tehran, Iran
Amir Hossein Foruzan
Department of Biomedical Engineering, Engineering Faculty, Shahed University, Tehran, Iran
Shahriar B. Shokouhi
Department of Electrical Engineering ,Iran University of science and Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :