Multi-Modal Driver Drowsiness Detection in ADAS via Attention-Guided Siamese Network with Temporal Modeling

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 14

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJWR-9-1_003

تاریخ نمایه سازی: 30 بهمن 1404

چکیده مقاله:

Driver drowsiness detection plays a critical role in improving road safety, as drowsiness substantially increases the likelihood of traffic accidents. In this study, we propose a novel multi-modal framework within Advanced Driver Assistance Systems (ADAS) that leverages an Attention-Guided Siamese Network coupled with temporal modeling to accurately capture both spatial and temporal patterns of driver fatigue. The Siamese network processes paired facial images, enabling the extraction of discriminative features that highlight subtle changes in driver state. The attention mechanism is explicitly applied to the spatial feature maps within each branch of the Siamese network, allowing the model to focus selectively on key facial regions—such as eyes and mouth—that are most indicative of drowsiness, while also weighting complementary sensor modalities dynamically. Temporal modeling is incorporated through a sequential module (e.g., LSTM or temporal convolution) that analyzes the extracted features over time, capturing gradual and evolving signs of drowsiness that static frame-based methods often overlook. Extensive evaluations on benchmark datasets (YawDD, NTHUDDD) and a novel real-world driving dataset demonstrate superior accuracy exceeding ۹۸.۸%, along with strong cross-subject generalization. Ablation studies confirm the critical contributions of the attention mechanism in improving feature discrimination, and the temporal modeling module in enhancing sensitivity to progressive drowsiness. The proposed method surpasses traditional approaches in temporal awareness, data efficiency, and resilience to inter-subject and environmental variations, offering a robust and interpretable solution for real-time driver drowsiness monitoring in intelligent vehicles.

نویسندگان

Mahdi Seyfipoor

Department of Computer Engineering, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran;

Mohadese Parvizib

Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran;

Siamak Mohammadi

Department of Computer Engineering, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran;

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Fu, S. Ye, X. Fu, T. Chen and J. ...
  • J. Ju and H. Li, “A Survey of EEG-Based Driver ...
  • https://doi.org/۱۰.۴۸۵۵۰/arXiv.۲۵۰۸.۱۳۲۰۵[۲۲] J. Ren et al., “LiteFat: Lightweight spatio-temporal graph learning ...
  • https://doi.org/۱۰.۴۸۵۵۰/arXiv.۲۵۰۷.۲۱۷۵۶[۲۳] S. Qu, Z. Gao, X. Chen, N. Li, Y. ...
  • https://doi.org/۱۰.۴۸۵۵۰/arXiv.۲۴۰۵.۰۷۸۴۵[۲۴] Y. Albadawi, A. AlRedhaei and M. Takruri. “Real-time machine ...
  • https://doi.org/۱۰.۴۸۵۵۰/arXiv.۱۷۰۷.۰۲۱۳۱[۳۶] L. Alzubaidi et al., “Review of deep learning: concepts, ...
  • https://doi.org/۱۰.۴۸۵۵۰/arXiv.۲۳۰۶.۰۰۱۴۴[۴۸] M. V. Ferro, Y. D. Mosquera, F. J. R. ...
  • نمایش کامل مراجع