Implementation of advanced machine learning on synthetic data for estimation of SOH and degradation of lithium-ion batteries
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 39
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
TSTACON02_004
تاریخ نمایه سازی: 26 بهمن 1404
چکیده مقاله:
Lithium ion batteries have become one of the most important energy storage technologies due to their high energy density, adequate cycle life, and broad industrial applications. Given the critical need for precise monitoring of their state of health (SOH) to optimize both performance and safety, accurate estimation of battery health and the underlying causes of capacity fade is of dominant importance. In this study, using a synthetic database, we propose a comprehensive framework for estimating SOH and its respective degradation modes based on differential voltage and incremental capacity curves. Statistical analysis of the extracted features was conducted to implement support vector machine (SVM) and gradient boosting models for the estimation of SOH and the LLI, LAMPE, and LAMNE degradation modes. The results demonstrated that the SVM model outperformed the gradient boosting model, achieving R values of ۰.۹۷, ۰.۹۶, ۰.۹۴ and ۰.۹۹ for the LLI, LAMPE, and LAMNE degradation modes and SOH estimation, respectively.
کلیدواژه ها:
نویسندگان
Abolfazl Moghaddam
B.Sc. in Chemical Engineering, University of Guilan
Shadi Habibi
B.Sc. in Chemical Engineering, University of Guilan
Behnam Ghalami Choobar
Assistant Professor, Department of Chemical Engineering, University of Guilan