A machine-learning approach for optimal ionic concentration determination in smart-water EOR applications
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 14
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-17-2_004
تاریخ نمایه سازی: 25 بهمن 1404
چکیده مقاله:
The smart water-enhanced oil recovery (EOR) process is a pioneering tertiary recovery method in the petroleum industry. Meanwhile, more than half of oil reserves in the world are carbonate. Accordingly, considering the technical and financial aspects, the determination of the accurate concentration of presented ions in smart water is very important. Although several experimental studies considered this issue, no appropriate statistical method has been suggested to deal with this problem during smart water injection in carbonate rocks. In the present article, five different multi-target regression machine learning (ML) algorithms (i.e., Random Forest, Decision Tree, K-Nearest Neighbours, Lasso and Linear), were used to predict the ionic concentration in imbibition tests. A completely reliable dataset of imbibition test results, which were gathered from the literature, was employed in the algorithm learning process to examine their accuracy. After data processing, feature extraction, splitting data and building candidate ML models, an exact hyperparameter tuning was carried out to evaluate the ML models and select the best model. It was found that the Random Forest algorithm is the best-acting approach, with the lowest total root mean squared error (RMSE) of ۱.۲۳۱ and the highest score of ۰.۹۸۱ for predicting ionic concentration in smart water EOR applications. In conclusion, the proposed model is the most efficient approach as compared with commonly used costly laboratory tests, which can be a good candidate for predicting the concentration of ions in smart water injection processes.
کلیدواژه ها:
نویسندگان
Ehsan Bahonar
Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology, Tabriz, Iran
Sadegh Salmani
Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology, Ahvaz, Iran
Mahshid Rajabi
Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology, Ahvaz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :