A machine-learning approach for optimal ionic concentration determination in smart-water EOR applications

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 14

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-17-2_004

تاریخ نمایه سازی: 25 بهمن 1404

چکیده مقاله:

The smart water-enhanced oil recovery (EOR) process is a pioneering tertiary recovery method in the petroleum industry. Meanwhile, more than half of oil reserves in the world are carbonate. Accordingly, considering the technical and financial aspects, the determination of the accurate concentration of presented ions in smart water is very important. Although several experimental studies considered this issue, no appropriate statistical method has been suggested to deal with this problem during smart water injection in carbonate rocks. In the present article, five different multi-target regression machine learning (ML) algorithms (i.e., Random Forest, Decision Tree, K-Nearest Neighbours, Lasso and Linear), were used to predict the ionic concentration in imbibition tests. A completely reliable dataset of imbibition test results, which were gathered from the literature, was employed in the algorithm learning process to examine their accuracy. After data processing, feature extraction, splitting data and building candidate ML models, an exact hyperparameter tuning was carried out to evaluate the ML models and select the best model. It was found that the Random Forest algorithm is the best-acting approach, with the lowest total root mean squared error (RMSE) of ۱.۲۳۱ and the highest score of ۰.۹۸۱ for predicting ionic concentration in smart water EOR applications. In conclusion, the proposed model is the most efficient approach as compared with commonly used costly laboratory tests, which can be a good candidate for predicting the concentration of ions in smart water injection processes.

نویسندگان

Ehsan Bahonar

Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology, Tabriz, Iran

Sadegh Salmani

Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology, Ahvaz, Iran

Mahshid Rajabi

Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology, Ahvaz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • P. Ahmadi, H. Asaadian, S. Kord, and A. Khadivi, Investigation ...
  • H.S. Al-Hadhrami and M.J. Blunt, Thermally induced wettability alteration to ...
  • E.W. Al-Shalabi and K. Sepehrnoori, A comprehensive review of low ...
  • M.B. Alotaibi and H.A. Nasr-El-Din, Chemistry of injection water and ...
  • N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, ...
  • T. Austad and D.C. Standnes, Spontaneous imbibition of water into ...
  • E. Bahonar, Y. Ghalenoei, M. Chahardowli, M. Simjoo, New correlations ...
  • M. Belgiu and L. Dr˘agu, Random forest in remote sensing: ...
  • G. Biau, Analysis of a random forests model, J. Mach. ...
  • G. Biau and E. Scornet, A random forest guided tour, ...
  • B. Boehmke and B.M. Greenwell, Hands-on Machine Learning with R, ...
  • H. Borchani, G. Varando, C. Bielza, and P. Larra˜naga, A ...
  • A.L. Boulesteix, S. Janitza, J. Kruppa, and I.R. Konig, Overview ...
  • L. Breiman, Random forests, Machine Learn. ۴۵ (۲۰۰۱), ۵–۳۲ ...
  • L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification ...
  • M.Y. Chen, Predicting corporate financial distress based on integration of ...
  • X. Chen and h. Ishwaran, Random forests for genomic data ...
  • G.V. Chilingar and T.F. Yen, Some notes on wettability and ...
  • H.E. Copeland, K.E. Doherty, D.E. Naugle, A. Pocewicz, and J.M. ...
  • A. Criminisi, Decision forests: A unified framework for classification, regression, ...
  • A. Criminisi, J Shotton, and E. Konukoglu, Decision forests: A ...
  • C. Dang, L. Nghiem, E. Fedutenko, E. Gorucu, C. Yang, ...
  • B. Efron and T. Hastie, Computer Age Statistical Inference: Algorithms, ...
  • S.J. Fathi, T. Austad, and S. Strand, Smart water as ...
  • S.J. Fathi, T. Austad, and S. Strand, Water-based enhanced oil ...
  • J. Gareth, W. Daniela, H. Trevor, and T. Robert, An ...
  • J. Ghosn, and Y. Bengio, Multi-Task Learning for Stock Selection, ...
  • J. Gillberg, P. Marttinen, M. Pirinen, A.J. Kangas, P. Soininen, ...
  • P.O. Gislason, J.A. Benediktsson, and J.R. Sveinsson, Random forest classification ...
  • P.O. Gislason, J.A. Benediktsson, and J.R. Sveinsson, Random forests for ...
  • E. Goel and E. Abhilasha, Random forest: A review, Int. ...
  • P. Hall, B.U. Park, and R.J. Samworth, Choice of neighbor ...
  • L.D. Hallenbeck, J.E. Sylte, D.J. Ebbs, and L.K. Thomas, Implementation ...
  • T. Hastie and R. Tibshirani, Discriminant adaptive nearest neighbor classification ...
  • G. Hirasaki and D.L. Zhang, Surface chemistry of oil recovery ...
  • P.A. Hopkins, I. Omland, F. Layti, S. Strand, T. Puntervold, ...
  • G.F. Hughes, On the mean accuracy of statistical pattern recognizers, ...
  • Z. Ibrahim and D. Rusli Predicting students’ academic performance: Comparing ...
  • S.B. Imandoust and M. Bolandraftar, Application of k-nearest neighbor (kNN) ...
  • J.H. Jeong, J.P. Resop, N.D. Mueller, D.H. Fleisher, K. Yun, ...
  • R.J. Lewis, An introduction to classification and regression tree (CART) ...
  • C.D. Manning and H. Schutze Foundations of Statistical Natural Language ...
  • G. Melki, and A. Cano, V. Kecman, and S. Ventura, ...
  • S. Mohammadi, S. Kord, and J. Moghadasi, An experimental investigation ...
  • N.R. Morrow, Wettability and its effect on oil recovery, J. ...
  • C. Nguyen, Y. Wang, and H.N. Nguyen, Random forest classifier ...
  • O. Okun and H. Priisalu, Random forest for gene expression ...
  • M. Pal, Random forests for land cover classification, IEEE Int. ...
  • D.S. Palmer, N.M. O’Boyle, R.C. Glen, and J.B.O. Mitchell, Random ...
  • L.E. Peterson, K-nearest neighbor, Scholarpedia ۴ (۲۰۰۹), no. ۲, ۱۸۸۳ ...
  • T. Puntervold, S. Strand, R. Ellouz, and T. Austad, Modified ...
  • J. Romanuka, J. Hofman, D.J. Ligthelm, B.M. Suijkerbuijk, A.H. Marcelis, ...
  • P. Royston and D.G. Altman, Risk stratification for in-hospital mortality ...
  • S.F. Shariatpanahi, P. Hopkins, H. Aksulu, S. Strand, T. Puntervold, ...
  • E. Scornet, On the asymptotics of random forests, J. Multivar. ...
  • E. Scornet, G. Biau, J.P. Vert, Consistency of random forests, ...
  • Y.Y. Song and L.U. Ying, Decision tree methods: Applications for ...
  • D.C. Standnes and T. Austad, Wettability alteration in carbonates: Interaction ...
  • S. Strand, T. Puntervold, and T. Austad, Effect of temperature ...
  • V. Svetnik, A. Liaw, C. Tong, J.C. Culberson, R.P. Sheridan, ...
  • K. Tatsumi, Y. Yamashiki, M.A.C. Torres, and C.L.R. Taipe, Crop ...
  • G.K.F. Tso and K.K.W. Yau, Predicting electricity energy consumption: A ...
  • H. Tyralis, G. Papacharalampous, and A. Langousis, A brief review ...
  • X. Xi, V.S. Sheng, B. Sun, L. Wang, and F. ...
  • M. Xu, P. Watanachaturaporn, P.K. Varshney, and M.K. Arora, Decision ...
  • Z. Yao and W.L. Ruzzo, A regression-based K nearest neighbor ...
  • Z. Yu, F. Haghighat, B.C.M. Fung, and H. Yoshino, A ...
  • H.M. Zawbaa, M. Hazman, M. Abbass, and A.E. Hassanien, Automatic ...
  • P. Zhang and T. Austad, Wettability and oil recovery from ...
  • S. Zhang, X. Li, M. Zong, X. Zhu, and D. ...
  • Y. Zhang and N.R. Morrow, Comparison of secondary and tertiary ...
  • X. Zhen, M. Yu, X. He, and S. Li, Multi-target ...
  • X. Zhen, M. Yu, F. Zheng, I.B. Nachum, M. Bhaduri, ...
  • A. Ziegler and I.R. Konig, Mining data with random forests: ...
  • نمایش کامل مراجع