On the Optimality of Fazzy PID Neuro-Gain-Scheduling Controller for Nonlinear Svstems

سال انتشار: 1386
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,865

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEE15_324

تاریخ نمایه سازی: 17 بهمن 1385

چکیده مقاله:

A novel optimized fuzzy PID neuro-gain scheduling controller is proposed in this paper A ner.tral netw ork adaptively assigns the appropriate paratneters for the fuzzy PID controller. Genetic algorithms are used to find the optimum training data for the neural network. Also, GA is thereafter once again used to optimize the neural network parameters such as number of neurons, layers and activation functions so that to minimize a predefined enor Jimctions. The fuzzy controller is designed according to human expertise. As a case study, the proposed controller is applied on a nonlinear robot arm with a one degree freedom and compared with classical gain schectuling and a conventional fuzzy neuro-gain schedtling controllers. Simulation results show that optimizing the parameters of the neural network( such as number of neurons and layers) with genetic algorithms, can greatly enhance the performance ofthe controller while its implementation complexity remains the same or even decreases.

نویسندگان

Mahnaz Arvaneh

Ferdowsi University of Mashhad

Mohammad Danaie

Ferdowsi University of Mashhad