Supervised Learning Algorithm Comparison in Discharge Status Prediction of Trauma Patients: Empirical Evaluation

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 25

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-16-1_004

تاریخ نمایه سازی: 20 بهمن 1404

چکیده مقاله:

Background: By analyzing information from trauma centers, hospitals can identify crucial performance indicators that affect budgets and present growth opportunities, potentially leading to lower mortality rates and improved health status indicators.Objective: This study aims to determine the best-supervised algorithm for diagnosing the discharge status of trauma patients.Material and Methods: This retrospective study used the data, collected by the Kashan Trauma Registry from March ۲۰۱۸ to February ۲۰۱۹. Several supervised algorithms, including Naive Bayes, Logistic Regression, Support Vector Machine, Random Forest, and K-Nearest Neighbors, have been evaluated for predicting the discharge status of trauma patients. The performance metrics of accuracy, precision, recall, and F-measure were used. The hold-out technique was applied to train the data.Results: The Random Forest algorithm had the best performance among the other algorithms. The best accuracy, precision, recall, and F-measure for Gini index were ۸۴/۲%, ۷۹/۷%, ۷۸/۳%, and ۷۶.۴%, and for information gain were ۸۴.۶%, ۷۹.۶%, ۷۶.۸%, and ۷۶/۲۰%, respectively. Conclusion: The results of this research showed that the supervised algorithms, with proper parameter settings, can help diagnose the discharge status of trauma patients. In addition, data balancing can help improve the performance of the algorithms. However, this claim cannot be generalized because it depends on the type of algorithm and the values of the parameters.

نویسندگان

Zahra Kohzadi

Health Information Management Research Center, Kashan University of Medical Sciences, Kashan, Iran

Ali Mohammad Nickfarjam

Health Information Management Research Center, Kashan University of Medical Sciences, Kashan, Iran

Zeinab Kohzadi

Department of Medical Informatics, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences, Tehran, Iran

Leila Shokrizadeh Arani

Health Information Management Research Center, Kashan University of Medical Sciences, Kashan, Iran

Mehrdad Mahdian

Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran

Felix Holl

DigiHealth Institute, Neu-Ulm University of Applied Sciences, Neu-Ulm, Germany

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Injuries and violence. World Health Organization; ۲۰۲۱. Available from: https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence ...
  • Preventing injuries and violence: an overview. World Health Organization; ۲۰۲۲. ...
  • Based on the WHO Global Status Report on Road Safety ...
  • Global Status Report on Alcohol and Health ۲۰۱۸. World Health ...
  • Narula N, Tsikis S, Jinadasa SP, Parsons CS, Cook CH, ...
  • Elkbuli A, Sutherland M, Gargano T, Kinslow K, Liu H, ...
  • Knauf T, Buecking B, Geiger L, Hack J, Schwenzfeur R, ...
  • Strosberg DS, Housley BC, Vazquez D, Rushing A, Steinberg S, ...
  • Guidelines for trauma quality improvement programmes. World Health Organization; ۲۰۰۹. ...
  • Mock C, Nguyen S, Quansah R, Arreola-Risa C, Viradia R, ...
  • Varghese DP, Tintu PB. A survey on health data using ...
  • Ogundele IO, Popoola OL, Oyesola OO, Orija KT. A review ...
  • Garcia-Carretero R, Vigil-Medina L, Mora-Jimenez I, Soguero-Ruiz C, Barquero-Perez O, ...
  • Eedi H, Kolla M. Machine learning approaches for healthcare data ...
  • Induja SN, Raji CG. Computational methods for predicting chronic disease ...
  • Ahmad I, Ullah I, Khan WU, Ur Rehman A, Adrees ...
  • Zubair M, Asif Iqbal MD, Shil A, Haque E, Moshiul ...
  • Gesicho MB, Were MC, Babic A. Evaluating performance of health ...
  • Guo X, Lin H, Wu Y, Peng M. A new ...
  • Bruschetta R, Tartarisco G, Lucca LF, Leto E, Ursino M, ...
  • Kuo PJ, Wu SC, Chien PC, Rau CS, Chen YC, ...
  • Feng JZ, Wang Y, Peng J, Sun MW, Zeng J, ...
  • Wang R, Zeng X, Long Y, Zhang J, Bo H, ...
  • Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, ...
  • Stoitsas K, Bahulikar S, De Munter L, De Jongh MAC, ...
  • Jalali A, Lonsdale H, Zamora LV, Ahumada L, Nguyen ATH, ...
  • Doucet JJ, Godat LN, Berndtson AE, Liepert AE, Weaver JL, ...
  • Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, ...
  • Karandikar P, Massaad E, Hadzipasic M, Kiapour A, Joshi RS, ...
  • Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ. ...
  • Muhammad I, Yan Z. Supervised Machine Learning Approaches: A Survey. ...
  • Cortes C, Vapnik V. Support vector machine. Machine Learning. ۱۹۹۵;۲۰(۳):۲۷۳-۹۷ ...
  • Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements ...
  • Hackeling G. Mastering Machine Learning with scikit-learn. Packt Publishing Ltd; ...
  • Alpaydin E. Introduction to machine learning. ۳rd ed: The MIT ...
  • Brownlee J. Probability for machine learning: Discover how to harness ...
  • Pampel FC. Logistic regression: A primer. Second ed. Sage; ۲۰۲۰ ...
  • Menard S. Logistic regression: From introductory to advanced concepts and ...
  • Breiman L. Random forests. Machine Learning. ۲۰۰۱;۴۵:۵-۳۲. doi: ۱۰.۱۰۲۳/A:۱۰۱۰۹۳۳۴۰۴۳۲۴ ...
  • Cutler A, Cutler DR, Stevens JR. Random forests. In: Ensemble ...
  • Kaur G, Kaur V, Sharma Y, Bansal V. Analyzing various ...
  • Fernández A, Garcia S, Herrera F, Chawla NV. SMOTE for ...
  • Dowlagar S, Mamidi R. DepressionOne@ LT-EDI-ACL۲۰۲۲: Using Machine Learning with ...
  • Bishop CM, Nasrabadi NM. Pattern recognition and machine learning. New ...
  • Witten IH, Frank E. Data mining: practical machine learning tools ...
  • Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, ...
  • Matsuo K, Aihara H, Nakai T, Morishita A, Tohma Y, ...
  • نمایش کامل مراجع