A Decision Support System for Managing Health Symptoms of Living Near Mobile Phone Base Stations
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 16، شماره: 1
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-16-1_005
تاریخ نمایه سازی: 20 بهمن 1404
چکیده مقاله:
Background: The rapid increase in the number of Mobile Phone Base Stations (MPBS) has raised global concerns about the potential adverse health effects of exposure to Radiofrequency Electromagnetic Fields (RF-EMF). The application of machine learning techniques can enable healthcare professionals and policymakers to proactively address concerns surrounding RF-EMF exposure near MPBS.Objective: The current study aimed to investigate the potential of machine learning models for the prediction of health symptoms associated with RF-EMF exposure in individuals residing near MPBS.Material and Methods: This analytical study utilized Support Vector Machine (SVM) and Random Forest (RF) algorithms, incorporating ۱۱ predictors related to participants’ living conditions. A total of ۶۹۹ adults participated in the study, and model performance was assessed using sensitivity, specificity, accuracy, and the Area Under Curve (AUC).Results: The SVM-based model demonstrated strong performance, with accuracies of ۸۵.۳%, ۸۲%, ۸۴%, ۸۲.۴%, and ۶۵.۱% for headache, sleep disturbance, dizziness, vertigo, and fatigue, respectively. The corresponding AUC values were ۰.۹۹, ۰.۹۸, ۰.۹۲۰, ۰.۸۹, and ۰.۸۱. Compared to the RF model and a previously developed model, the SVM-based model exhibited higher sensitivity, particularly for fatigue, with sensitivities of ۷۰.۰%, ۸۳.۴%, ۸۵.۳%, ۷۳.۰%, and ۶۹.۰% for these five health symptoms. Particularly for predicting fatigue, sensitivity and AUC were significantly improved (۷۰% vs. ۸% and ۱۱.۱% for SVM, Multilayer Perceptron Neural Network (MLPNN), and RF, respectively, and ۰.۸۱ vs. ۰.۶۲ and ۰.۶۴, for SVM, MLPNN, and RF, respectively). Conclusion: Machine learning methods, specifically SVM, hold promise in effectively managing health symptoms in individuals residing near or planning to settle in the vicinity of MPBS.
کلیدواژه ها:
Artificial Intelligence ، Electromagnetic Hypersensitivity (EHS) ، Electromagnetic Fields ، Machine Learning ، Mobile Phone Base Stations
نویسندگان
Hossein Parsaei
Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
Mehdi Faraz
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
Seyed Mohammad Javad Mortazavi
Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :