Brain Tumor Classification Using Magnetic Resonance Images and Residual Convolutional Neural Networks
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 12
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SECONGRESS03_108
تاریخ نمایه سازی: 20 بهمن 1404
چکیده مقاله:
This study presents a novel approach for classifying brain tumor MRI images into four categories—glioma, meningioma, no tumor, and pituitary tumor—using a residual convolutional neural network (CNN) enhanced with wavelet denoising and contrast enhancement. The methodology addresses class imbalance and image noise through preprocessing and weighted loss functions. The model, trained on a dataset of ۳,۶۵۹ images, achieved a test accuracy of ۹۱.۶۵% after early stopping at epoch ۵۴. Detailed analysis of precision, recall, and F۱-scores from the confusion matrix highlights robust performance, particularly for the majority classes, with potential for improvement in minority class detection.
کلیدواژه ها:
Magnetic Resonane Imagin ، Convolutional Neural Network ، MRI ، CNN ، Residual Convolutional Neural Network ، ResNet
نویسندگان
Mahdi Alikahi
Medical Radiation Engineering Department, Shahid Beheshti University, Tehran, Iran
Mohammad MohammadZadeh
Medical Radiation Engineering Department, Shahid Beheshti University, Tehran, Iran