Brain Tumor Classification Using Magnetic Resonance Images and Residual Convolutional Neural Networks

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 12

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

SECONGRESS03_108

تاریخ نمایه سازی: 20 بهمن 1404

چکیده مقاله:

This study presents a novel approach for classifying brain tumor MRI images into four categories—glioma, meningioma, no tumor, and pituitary tumor—using a residual convolutional neural network (CNN) enhanced with wavelet denoising and contrast enhancement. The methodology addresses class imbalance and image noise through preprocessing and weighted loss functions. The model, trained on a dataset of ۳,۶۵۹ images, achieved a test accuracy of ۹۱.۶۵% after early stopping at epoch ۵۴. Detailed analysis of precision, recall, and F۱-scores from the confusion matrix highlights robust performance, particularly for the majority classes, with potential for improvement in minority class detection.

کلیدواژه ها:

Magnetic Resonane Imagin ، Convolutional Neural Network ، MRI ، CNN ، Residual Convolutional Neural Network ، ResNet

نویسندگان

Mahdi Alikahi

Medical Radiation Engineering Department, Shahid Beheshti University, Tehran, Iran

Mohammad MohammadZadeh

Medical Radiation Engineering Department, Shahid Beheshti University, Tehran, Iran