AI-Driven Personalized Learning and Its Impact on Student Engagement and Decision-Making Competencies in Management Education
محل انتشار: هشتمین همایش بین المللی دستاوردهای نوین در فناوری اطلاعات، علوم کامپیوتر، امنیت، شبکه و هوش مصنوعی
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 13
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
INDEXCONF08_042
تاریخ نمایه سازی: 20 بهمن 1404
چکیده مقاله:
A systematic review of peer-reviewed empirical studies (Y.YY_Y. TO) in management and business education reveals that AI-driven personalized learning significantly outperforms traditional approaches. Student engagement consistently improves by Your.%, evidenced through behavioral metrics (e.g., time-on-platform, interaction rates), self-reported motivation, autonomy, competence, and relatedness (Self- Determination Theory), with effect sizes reaching regression coefficients of •‚ (p < *, **\) and scale increases from "," to ε,V. Decision-making competencies show gains of ۱۰_Y.%, with neural networks achieving up to % predictive accuracy in simulations and marked improvements in strategic thinking and problem-solving efficiency. Overall academic performance rises ۱۰_۵.% across grades, test scores, task completion speed, and knowledge retention. These benefits stem from adaptive platforms, deep learning, optimization algorithms, generative AI, and hybrid systems delivering real-time individualized feedback and dynamic pathways. No study reported neutral or negative effects compared to lecture-based or one-size-fits-all models.
کلیدواژه ها:
نویسندگان
Amirhossein Yahyavi
MSc student of business administration (MBA), Faculty of Management and Finance Sciences, Department of Management, Khatam University, Tehran, Iran