Comparative performance of machine learning models in ischemic stroke classification

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 8

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JOBJ-13-2_005

تاریخ نمایه سازی: 17 بهمن 1404

چکیده مقاله:

Background: Stroke is a leading cause of disability and mortality worldwide, with ischemic strokes comprising the majority of cases. Despite advances in neuroimaging, there is a pressing need for supplementary diagnostic tools to enhance accuracy. This study explores the application of machine learning (ML) techniques to predict ischemic stroke using RNA-seq data from the GEO database (GSE۲۲۲۵۵). Methods: We developed and evaluated various machine learning models, including Random Forest, K-Nearest Neighbors (KNN), and CHAID (Chi-squared Automatic Interaction Detection), based on their accuracy, precision, specificity, and sensitivity. The analysis utilized a dataset comprising ۵۴,۶۷۶ genes across ۴۰ samples (۲۰ cases and ۲۰ controls). All modeling was conducted using IBM SPSS Modeler version ۱۸. Results: The models were assessed based on their classification accuracy, performance evaluation scores, and AUC/Gini AUC metrics. The Random Forest model achieved the highest accuracy (۹۶.۶۷% in training, ۸۰% in testing), while the CHAID algorithm provided interpretable results with key variables (TP۵۳, CYP۱A۱, and CYP۲D۶) identified. The KNN model exhibited strong performance with notable confidence in its predictions. Conclusion: This study demonstrates the potential of ML techniques, particularly Random Forest, to enhance stroke diagnosis and provide insights into stroke pathology, offering a novel approach to improving clinical decision-making. However, the study is limited by the small sample size, and future work should focus on validation with larger datasets and integration with other omics data for clinical application.

نویسندگان

Mina Rahmati

Pasteur Institute of Iran, Tehran, Iran

Masoud Arabfard

Artificial Intelligence in Health Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Feske SK. Ischemic Stroke. Am J Med. ۲۰۲۱;۱۳۴(۱۲):۱۴۵۷-۶۴ ...
  • Putaala J. Ischemic Stroke in Young Adults. Continuum (Minneapolis, Minn). ...
  • Lim H, Park Y, Hong JH, Yoo K-B, Seo K-D. ...
  • Rahmati M, Ferns GA, Mobarra N. The lower expression of ...
  • Li W, Shao C, Zhou H, Du H, Chen H, ...
  • Patil S, Rossi R, Jabrah D, Doyle K. Detection, diagnosis ...
  • Wardlaw JM, Mair G, Von Kummer R, Williams MC, Li ...
  • Ruksakulpiwat S, Phianhasin L, Benjasirisan C, Schiltz NK. Using Neural ...
  • Daidone M, Ferrantelli S, Tuttolomondo A. Machine learning applications in ...
  • Wang J, Gong X, Chen H, Zhong W, Chen Y, ...
  • Jabal MS, Joly O, Kallmes D, Harston G, Rabinstein A, ...
  • Krug T, Gabriel JP, Taipa R, Fonseca BV, Domingues-Montanari S, ...
  • Yahiya Adam S, Yousif A, Bashir MB. Classification of Ischemic ...
  • Hong S, Kim H-W, Walton B, Kaboi M. The Intersectionality ...
  • Althuwaynee OF, Pradhan B, Park H-J, Lee JH. A novel ...
  • Zhang Z. Introduction to machine learning: k-nearest neighbors. Ann Transl ...
  • Halder RK, Uddin MN, Uddin MA, Aryal S, Khraisat A. ...
  • Arabfard M, Najafi A, Rezaei E. Predicting COVID-۱۹ Models for ...
  • Pandian JD, Gall SL, Kate MP, Silva GS, Akinyemi RO, ...
  • Montaner J, Ramiro L, Simats A, Tiedt S, Makris K, ...
  • Zou R, Zhang D, Lv L, Shi W, Song Z, ...
  • Daidone M, Ferrantelli S, Tuttolomondo A. Machine learning applications in ...
  • Shah YAR, Qureshi SM, Qureshi HA, Shah S, Shiwlani A, ...
  • Asif S, Wenhui Y, ur-Rehman S-, ul-ain Q-, Amjad K, ...
  • Fernandes JN, Cardoso VE, Comesaña-Campos A, Pinheira A. Comprehensive Review: ...
  • Deshpande D, Chhugani K, Chang Y, Karlsberg A, Loeffler C, ...
  • Zhou L, Pan S, Wang J, Vasilakos A. Machine learning ...
  • Heo J, Yoon JG, Park H, Kim YD, Nam HS, ...
  • Diaz-Uriarte R, Gómez de Lope E, Giugno R, Fröhlich H, ...
  • Perakakis N, Yazdani A, Karniadakis GE, Mantzoros C. Omics, big ...
  • Imran B, Wahyudi E, Subki A, Salman S, Yani A. ...
  • Mu Q, Zhang Y, Gu L, Gerner ST, Qiu X, ...
  • Kurushima H, Ohno M, Miura T, Nakamura TY, Horie H, ...
  • Wang SK, Zhang H, Hu CY, Liu JF, Chadha S, ...
  • Aubrey BJ, Strasser A, Kelly GL. Tumor-Suppressor Functions of the ...
  • Meng F-d, Ma P, Sui C-g, Tian X, Jiang Y-h. ...
  • Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke ...
  • Peng C, Ding Y, Yi X, Shen Y, Dong Z, ...
  • Zhang S, Li X, Zong M, Zhu X, Wang R. ...
  • Wang X, Zhang XY, Liao N-Q, He Z-H, Chen Q-F. ...
  • Zhang Y, Li N, Kobayashi S. Paxillin participates in the ...
  • Yi J-H, Park S-W, Kapadia R, Vemuganti R. Role of ...
  • German AE, Mammoto T, Jiang E, Ingber DE, Mammoto A. ...
  • Liang J, Feng J, Lin Z, Wei J, Luo X, ...
  • نمایش کامل مراجع