Face Recognition with Kernel Direct Discriminant Analysis and SVM Combined Method
محل انتشار: پانزدهیمن کنفرانس مهندسی برق ایران
سال انتشار: 1386
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,437
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE15_100
تاریخ نمایه سازی: 17 بهمن 1385
چکیده مقاله:
Applications such as Face Recognition (FR) that deal with high-dimensional data need a mapping technique that introduces representation of lowdimensional features with enhanced discriminatory power and a proper classifier, able to classify those complex features .Most of traditiornl linear discriminant analysis (LDA) sufer from the disadvantage that their optimality criteria are not directly related to the classifcation ability of the
obtained feature representation. Moreover, their classi"fication accuracy is affected by the "small sample size" (SSS) problem which is often encountered in FR laslrs. In this short paper, we combine nonlinear kernel based mapping of data called KDDA with Support Vector machine (SVM) classifier to deal with both of the shortcomings in an fficient and cost ffictive manner. The proposed here method is compared, in terms of
classification accuracy, lo other commonly used FR methods on UMIST face datqbase. Resuhs indicate that the performance of the proposed method is overall superior to those oftraditional FR approaches, such as the Eigenfaces, Fisherfaces, and D-LDA methods and t r aditional line ar c lassifi ers.
کلیدواژه ها:
Face Recognition ، Kernel Direct Discriminant Analysis (KDDA) ، small sample size problem (SSS) ، Support Vector Machine (SVM)
نویسندگان
Seyyed Majid valiollahzadeh
Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran
Abolghasem Sayadiyan
Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran
Mohammad Nazari
Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :