Deep Reinforcement Learning for Efficient Multilingual Dialogue Management

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 13

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-14-1_002

تاریخ نمایه سازی: 15 بهمن 1404

چکیده مقاله:

kground and Objectives: Developing efficient task-oriented dialogue systems capable of handling multilingual interactions is a growing area of research in natural language processing (NLP). In this paper, we propose SenSimpleDS, a deep reinforcement learning-based joint task-oriented dialogue system, designed for multilingual conversations.Methods: The system utilizes a deep Q-network and the SBERT model to represent the dialogue environment. We introduce two variants, SenSimpleDS+ and SenSimpleDS-NSP, which incorporate modifications in the ε-greedy method and leverage next sequence prediction (NSP) using BERT to refine the reward function. These methods are evaluated on datasets in English, Persian, Spanish, and German, and compared with baseline methods such as SimpleDS and SCGSimpleDS.Results: Our experimental results demonstrate that the proposed methods outperform the baselines in terms of average collected rewards, requiring fewer learning steps to achieve optimal dialogue policies. Notably, the incorporation of NSP significantly improves performance by optimizing reward collection. The multilingual SenSimpleDS further showcases the system’s ability to function across languages using a random forest classifier for language detection and MPNet for environment construction. In addition to system evaluations, we introduce a new Persian dataset for task-oriented dialogue in the restaurant domain, expanding the resources available for developing dialogue systems in low-resource languages.Conclusion: SenSimpleDS, a deep reinforcement learning-based joint task-oriented dialogue system, demonstrates superior performance over baseline methods by leveraging deep Q-networks, SBERT. The integration of next sequence prediction (NSP) significantly enhances reward optimization, enabling faster convergence to optimal dialogue policies. This work establishes a foundation for future research in multilingual dialogue systems, with potential applications across diverse service domains.

نویسندگان

Mohammad Javad Nasri-Lowshani

Department of Artificial Intelligence, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.

Javad Salimi Sartakhti

Department of Artificial Intelligence, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.

Hossein Ebrahimpour-Komole

Department of Artificial Intelligence, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • X. Wang, C. Yuan, "Recent advances on human-computer dialogue," CAAI ...
  • H. Chen, X. Liu, D. Yin, J. Tang, "A survey ...
  • B. Liu, G. Tür, D. Hakkani-Tür, P. Shah, L. Heck, ...
  • P. Budzianowski, I. Vulić, "Hello, It's GPT-۲ - How can ...
  • F. Almeida, G. B. Xexéo, "Word embeddings: A survey," ArXiv, ...
  • J. Devlin, M. W. Chang, K. Lee, K. Toutanova, "BERT: ...
  • J. Pennington, R. Socher, C. Manning, "GloVe: Global vectors for ...
  • N. Reimers, I. Gurevych, "Sentence-BERT: Sentence embeddings using siamese BERT-Networks," ...
  • X. Zhang, H. Wang, "A joint model of intent determination ...
  • M. Rafiepour, J. S. Sartakhti, "CTRAN: CNN-Transformer-based network for natural ...
  • Y. Shi, K. Yao, H. Chen, Y. C. Pan, M. ...
  • Z. Yan, N. Duan, P. Chen, M. Zhou, J. Zhou, ...
  • T. H. Wen, M. Gašić, N. Mrkšić, P. H. Su, ...
  • O. Dušek, F. Jurčíček, "Sequence-to-sequence generation for spoken dialogue via ...
  • Z. Jiang, X. L. Mao, Z. Huang, J. Ma, S. ...
  • H. Cuayáhuitl, "SimpleDS: A simple deep reinforcement learning dialogue system," ...
  • H. Cuayáhuitl, S. Yu, A. Williamson, J. Carse, "Deep reinforcement ...
  • H. Cuayáhuitl, S. Yu, A. Williamson, J. Carse, "Scaling up ...
  • Z. Dehghanipour, J. Salimi, "An improved deep reinforcement learning for ...
  • V. Ilievski, C. Musat, A. Hossmann, M. Baeriswyl, "Goal-oriented chatbot ...
  • H. Cuayáhuitl, "A data-efficient deep learning approach for deployable multimodal ...
  • Y. Ma, X. Wang, Z. Dong, H. Chen, "Cascaded LSTMs ...
  • T. H. Wen, D. Vandyke, N. Mrkšić, M. Gašić, L. ...
  • X. Li, Y. N. Chen, L. Li, J. Gao, A. ...
  • M. Sharma, T. Russell-Rose, L. Barakat, A. Matsuo, "Building a ...
  • D. Ham, J. G. Lee, Y. Jang, K. E. Kim, ...
  • J. Kulhánek, V. Hudeček, T. Nekvinda, O. Dušek, "AuGPT: Auxiliary ...
  • Z. Borhanifard, H. Basafa, S. Z. Razavi, H. Faili, "Persian ...
  • K. Mahmoudi, H. Faili, "PerSHOPA Persian dataset for shopping dialogue ...
  • A. Ghandeharioun, J. H. Shen, N. Jaques, C. Ferguson, N. ...
  • N. Reimers, I. Gurevych, "Making monolingual sentence embeddings multilingual using ...
  • E. Razumovskaia, G. Glavas, O. Majewska, E. M. Ponti, A. ...
  • نمایش کامل مراجع