A Siamese network-based Xception for Face Recognition
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 20
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-14-1_004
تاریخ نمایه سازی: 15 بهمن 1404
چکیده مقاله:
kground and Objectives: Facial recognition technology has become a reliable solution for access control, augmenting traditional biometric methods. It primarily focuses on two core tasks: face verification, which determines whether two images belong to the same individual, and face identification, which matches a face to a database. However, facial recognition still faces critical challenges such as variations in pose, illumination, facial expressions, image noise, and limited training samples per subject.Method: This study employs a Siamese network based on the Xception architecture within a transfer learning framework to perform one-shot face verification. The model is trained to compare image pairs rather than classify them individually, using deep feature extraction and Euclidean distance measurement, optimized through a contrastive loss function.Results: The proposed model achieves high verification accuracy on benchmark datasets, reaching ۹۷.۶% on the Labeled Faces in the Wild (LFW) dataset and ۹۶.۲۵% on the Olivetti Research Laboratory (ORL) dataset. These results demonstrate the model’s robustness and generalizability across datasets with diverse facial characteristics and limited training data.Conclusion: Our findings indicate that the Siamese-Xception architecture is a robust and effective approach for facial verification, particularly in low-data scenarios. This method offers a practical, scalable solution for real-world facial recognition systems, maintaining high accuracy despite data constraints.
کلیدواژه ها:
نویسندگان
Ali Habibi
Department of Computer Engineering, Hamedan University of Technology, Hamedan, Iran.
Mahlagha Afrasiabi
Department of Computer Engineering, Hamedan University of Technology, Hamedan, Iran.
Moniba Chaparian
Department of Computer Engineering, Hamedan University of Technology, Hamedan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :