Weighted Words Multi-Domain Model for Aspect-Opinion Pairs Extraction

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 21

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-14-1_005

تاریخ نمایه سازی: 15 بهمن 1404

چکیده مقاله:

kground and Objectives: In Natural Language Processing (NLP), sentiment analysis is crucial for understanding and extracting aspects and opinions expressed in textual data. Recent methods have emphasized determining polarity in multi-domain sentiment analysis while giving less attention to aspect and opinion extraction. Furthermore, the terms that convey aspects and opinions may have different importance in different domains, and this difference should be considered to enhance the extraction of aspect-opinion pairs. Methods: To address these challenges, we propose a Weighted Words Multi-Domain (WWMD) model for aspect-opinion pairs extraction, consisting of a self-attention mechanism and a dense network. The self-attention mechanism extracts each word's importance according to the sentence's overall meaning. The dense network is used for domain prediction. It assigns greater weight to words relevant to each domain, which leads to considering the different significance of terms across various contexts. Adding an attention mechanism to the domain module allows for a clearer understanding of different aspects and opinions across various domains. We utilize a two-channel approach, one channel extracts aspects and opinions, while the other extracts the relationships between them. The weighted words extracted by our model are simultaneously considered as the input for both channels.Results: Using weighted words specific to each domain, improves the model output.Conclusion: Evaluation results on benchmark datasets demonstrate the superiority of the proposed model compared to state-of-the-art techniques.

نویسندگان

Atefeh Mohammadi

Department of Computer Engineering, Yazd University, Yazd, Iran.

Mohammad Reza Pajoohan

Department of Computer Engineering, Yazd University, Yazd, Iran.

Ali Mohammad Zareh Bidoki

Department of Computer Engineering, Yazd University, Yazd, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • T. Shaik, X. Tao, C. Dann, H. Xie, Y. Li, ...
  • H. Zhao, L. Huang, R. Zhang, Q. Lu, H. Xue, ...
  • H. T. Phan, N. T. Nguyen, D. Hwang, Y. S. ...
  • N. Gupta, R. Agrawal, "Application and techniques of opinion mining," ...
  • S. Chen, Y. Wang, J. Liu, Y. Wang, "Bidirectional machine ...
  • Z. Yuan, S. Wu, F. Wu, J. Liu, Y. Huang, ...
  • S. Wang, Y. Zhu, W. Gao, M. Cao, M. Li, ...
  • D. Chen, W. Su, P. Wu, B. Hua, "Joint multimodal ...
  • A. Ghorbanali, M. K. Sohrabi, "Exploiting bi-directional deep neural networks ...
  • D. Bollegala, D. Weir, J. Carroll, "Cross-domain sentiment classification using ...
  • S. Chen, J. Liu, Y. Wang, W. Zhang, Z. Chi, ...
  • R. Liu, Y. Shi, C. Ji, M. Jia, "A survey ...
  • A. M. M. Yazdian-Dehkordi, M. Nematbakhsh, "Identification of implicit features ...
  • M. Hu, B. Liu, "Mining and summarizing customer reviews," in ...
  • A. M. M-R. Pajoohan, M. Montazeri, "Identification of explicit features ...
  • K. Shu, A. Sliva, S. Wang, J. Tang, H. Liu, ...
  • A. Kumar, A. S. Veerubhotla, V. T. Narapareddy, V. Aruru, ...
  • R. Satapathy, S. R. Pardeshi, E. Cambria, "Polarity and subjectivity ...
  • J. Shobana, M. Murali, "An improved self attention mechanism based ...
  • H. S. Sharaf Al-deen, Z. Zeng, R. Al-sabri, A. Hekmat, ...
  • Y. Fu, J. Liao, Y. Li, S. Wang, D. Li, ...
  • K. H. Alyoubi, A. Sharma, "Deep recurrent neural model for ...
  • N. A. Abdullah, A. Feizollah, A. Sulaiman, N. B. Anuar, ...
  • L. P. Hung, S. Alias, "Beyond sentiment analysis: A review ...
  • K. Bhattacharjee, R. Gangadharaiah, "Document-level supervision for multi-aspect sentiment analysis ...
  • J. Lafferty, A. McCallum, F. Pereira, "Conditional random fields: Probabilistic ...
  • H. Cai et al., "Memd-absa: a multi-element multi-domain dataset for ...
  • H. Chen, Z. Zhai, F. Feng, R. Li, X. Wang, ...
  • Z. Zhai, H. Chen, F. Feng, R. Li, X. Wang, ...
  • L. Xianlong, M. Yang, Y. Wang, "Tagging-assisted generation model with ...
  • J. Yang, F. Dai, F. Li, Y. Xue, "Span-based pair-wise ...
  • P. Li, P. Li, X. Xiao, "Aspect-pair supervised contrastive learning ...
  • S. Yang, X. Jiang, H. Zhao, W. Zeng, H. Liu, ...
  • نمایش کامل مراجع