Vision-based Autonomous UAV Navigation Through GPS-Denied Narrow Passages using Deep Reinforcement Learning

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 27

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-14-1_006

تاریخ نمایه سازی: 15 بهمن 1404

چکیده مقاله:

kground and Objectives: Unmanned Aerial Vehicles (UAVs) face significant challenges in navigating narrow passages within GPS-denied environments due to sensor and computational limitations. While deep reinforcement learning (DRL) has improved navigation, many methods rely on costly sensors like depth cameras or LiDAR. This study addresses these issues using a vision-based DRL framework with a monocular camera for autonomous UAV navigation.Methods: We propose a DRL-based navigation system utilizing Proximal Policy Optimization (PPO). The system processes a stack of grayscale monocular images to capture short-term temporal dependencies, approximating the partially observable environment. A custom reward function encourages trajectory optimization by assigning higher rewards for staying near the passage center while penalizing further distances. The navigation system is evaluated in a ۳D simulation environment under a GPS-denied scenario.Results: The proposed method achieves a high success rate, surpassing ۹۷% in challenging narrow passages. The system demonstrates superior learning efficiency and robust generalization to new configurations compared to baseline methods. Notably, using stacked frames mitigates computational overhead while maintaining policy effectiveness.Conclusion: Our vision-based DRL approach enables autonomous UAV navigation in GPS-denied environments with reduced sensor requirements, offering a cost-effective and efficient solution. The findings highlight the potential of monocular cameras paired with DRL for real-world UAV applications such as search and rescue and infrastructure inspection. Future work will extend the framework to obstacle avoidance and general trajectory planning in dynamic environments.

نویسندگان

Mahdi Shahbazi Khojasteh

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran.

Armin Salimi Badr

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • N. Elmeseiry, N. Alshaer, T. Ismail, "A detailed survey and ...
  • M. A. Tahir, I. Mir, T. U. Islam, "A review ...
  • S. A. H. Mohsan, M. A. Khan, F. Noor, I. ...
  • M. Javaid, A. Haleem, S. Rab, R. P. Singh, R. ...
  • D. J. Yeong, G. Velasco-Hernandez, J. Barry, J. Walsh, "Sensor ...
  • K. Telli et al., "A comprehensive review of recent research ...
  • S. Campbell et al., "Sensor technology in autonomous vehicles : ...
  • Y. Lu, Z. Xue, G. S. Xia, L. Zhang, "A ...
  • L. He, N. Aouf, B. Song, "Explainable deep reinforcement learning ...
  • M. Kim, J. Kim, M. Jung, H. Oh, "Towards monocular ...
  • J. Li, X. Xiong, Y. Yan, Y. Yang, "A survey ...
  • S. Rezwan, W. Choi, "Artificial intelligence approaches for UAV navigation: ...
  • B. Mahdipour, S. H. Zahiri, I. Behravan, "An intelligent two ...
  • S. Y. Choi, D. Cha, "Unmanned aerial vehicles using machine ...
  • A. Carrio, C. Sampedro, A. Rodriguez-Ramos, P. Campoy, "A review ...
  • R. P. Padhy, S. Verma, S. Ahmad, S. K. Choudhury, ...
  • J. Gu et al., "Recent advances in convolutional neural networks," ...
  • Y. Chang, Y. Cheng, U. Manzoor, J. Murray, "A review ...
  • R. S. Sutton, "Reinforcement learning: An introduction," A Bradford Book, ...
  • H. Taheri, S. Rasoul Hosseini, M. A. Nekoui, "Deep reinforcement ...
  • A. S. Sadr, M. S. Khojasteh, H. Malek, A. Salimi-Badr, ...
  • S. Mashhouri, M. Rahmati, Y. Borhani, E. Najafi, "Reinforcement learning ...
  • S. Sabzekar, M. Samadzad, A. Mehditabrizi, A. N. Tak, "A ...
  • H. S. M. Mahalegi, A. Farhadi, G. Molnár, E. Nagy, ...
  • M. Ramezani, M. A. Amiri Atashgah, A. Rezaee, "A fault-tolerant ...
  • P. R. Gervi, A. Harati, S. K. Ghiasi-Shirazi, "Vision-based obstacle ...
  • M. S. Khojasteh, A. Salimi-Badr, "Autonomous quadrotor path planning through ...
  • A. P. Kalidas, C. J. Joshua, A. Q. Md, S. ...
  • A. Pachauri, V. More, P. Gaidhani, N. Gupta, "Autonomous Ingress ...
  • T. Bera, A. Sinha, A. K. Sadhu, R. Dasgupta, "Vision ...
  • J. Kumar, Himanshu, H. Kandath, P. Agrawal, "Vision based micro-uav ...
  • F. Valenti, D. Giaquinto, L. Musto, A. Zinelli, M. Bertozzi, ...
  • S. Veerawal, S. Bhushan, M. R. Mansharamani, B. Sharma, "Vision ...
  • R. Xiao, H. Du, C. Xu, W. Wang, "An efficient ...
  • A. G. Caldeira, J. V. R. Vasconcelos, M. Sarcinelli-Filho, A. ...
  • Y. Xue, W. Chen, "A UAV navigation approach based on ...
  • S. Aggarwal, N. Kumar, "Path planning techniques for unmanned aerial ...
  • D. Debnath, F. Vanegas, J. Sandino, A. F. Hawary, F. ...
  • B. Y. Li, H. Lin, H. Samani, L. Sadler, T. ...
  • A. Puente-Castro, D. Rivero, A. Pazos, E. Fernandez-Blanco, "A review ...
  • J. Gao, Y. Zheng, K. Ni, Q. Mei, B. Hao, ...
  • L. Liu, X. Wang, X. Yang, H. Liu, J. Li, ...
  • W. Zu, G. Fan, Y. Gao, Y. Ma, H. Zhang, ...
  • Y. Guo, X. Liu, X. Liu, Y. Yang, W. Zhang, ...
  • K. N. McGuire, G. C. H. E. de Croon, K. ...
  • M. Vazirpanah, S. H. Attarzadeh-Niaki, A. Salimi-Badr, "ROS-based co-simulation for ...
  • N. Mahdian, S. H. Attarzadeh-Niaki, A. Salimi-Badr, "A systematic embedded ...
  • T. Elmokadem, A. V. Savkin, "Towards fully autonomous UAVs: A ...
  • S. Y. Shin, Y. W. Kang, Y. G. Kim, "Automatic ...
  • Y. Yu, X. Si, C. Hu, J. Zhang, "A review ...
  • S. Chehelgami, E. Ashtari, M. A. Basiri, M. Tale Masouleh, ...
  • R. J. Alitappeh, N. Mahmoudi, M. R. Jafari, A. Foladi, ...
  • L. O. Rojas-Perez, J. Martinez-Carranza, "DeepPilot: A CNN for autonomous ...
  • S. Daftry, S. Zeng, J. A. Bagnell, M. Hebert, "Introspective ...
  • A. V. R. Katkuri, H. Madan, N. Khatri, A. S. ...
  • Z. Xue, T. Gonsalves, "Vision based drone obstacle avoidance by ...
  • S. S. Mousavi, M. Schukat, E. Howley, "Deep reinforcement learning: ...
  • F. AlMahamid, K. Grolinger, "Autonomous unmanned aerial vehicle navigation using ...
  • A. K. Shakya, G. Pillai, S. Chakrabarty, "Reinforcement learning algorithms: ...
  • A. Singla, S. Padakandla, S. Bhatnagar, "Memory-based deep reinforcement learning ...
  • O. Walker, F. Vanegas, F. Gonzalez, S. Koenig, "A deep ...
  • Y. Chen, N. González-Prelcic, R. W. Heath, "Collision-Free UAV Navigation ...
  • C. Wang, J. Wang, Y. Shen, X. Zhang, "Autonomous navigation ...
  • F. Garcia, E. Rachelson, "Markov decision processes," in Markov Decision ...
  • M. Hausknecht, P. Stone, "Deep recurrent q-learning for partially observable ...
  • H. Kurniawati, "Partially observable Markov decision processes and robotics," Annu. ...
  • L. Graesser and W. L. Keng, Foundations of deep reinforcement ...
  • J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. ...
  • R. Hoseinnezhad, "A comprehensive review of deep learning techniques in ...
  • T. Czarnecki, M. Stawowy, A. Kadłubowski, "Cost-effective autonomous drone navigation ...
  • W. Skarka, R. Ashfaq, "Hybrid machine learning and reinforcement learning ...
  • K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath, ...
  • J. Schulman, P. Moritz, S. Levine, M. Jordan, P. Abbeel, ...
  • L. Engstrom et al., "Implementation matters in deep rl: A ...
  • M. Andrychowicz et al., "What matters for on-policy deep actor-critic ...
  • S. Shah, D. Dey, C. Lovett, A. Kapoor, "AirSim: High-fidelity ...
  • B. Kabas, "Autonomous UAV navigation via deep reinforcement learning using ...
  • نمایش کامل مراجع