Artificial Intelligence to Overcome Challenges in Dynamic Clustering of VANET

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 17

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-14-1_007

تاریخ نمایه سازی: 15 بهمن 1404

چکیده مقاله:

kground and Objectives: Vehicular Ad Hoc Networks (VANETs) face significant challenges due to high mobility and rapid topology changes. One of the most critical issues in this context is the clustering process, which directly impacts delay reduction, cluster stability, and overall network efficiency. However, traditional clustering methods such as K-Means and MFO, which mainly rely on simple metrics like distance or signal strength, fail to deliver optimal performance in dynamic environments with variable network density. The primary objective of this study is to design and evaluate an advanced clustering algorithm called AI_MCA (Artificial Intelligence Multi Clustering Algorithm), leveraging artificial intelligence and multi-criteria decision-making. By considering factors such as signal strength, relative speed, node density, and vehicle movement direction, the proposed algorithm forms clusters with higher stability and efficiency in dynamic and high-density environments.Methods: This study uses simulations to evaluate AI_MCA in VANETs, which facilitate vehicle-to-vehicle communication and are characterized by high mobility and rapid position changes.Results: Simulations in NS۳ and SUMO show that AI_MCA reduces latency by ۲۰% (۱۲ms vs. ۱۵ms in MFO) and improves cluster stability by ۳۰% (lifetime of ۴۵s vs. ۳۳s in K-Means) within a ۶۰۰m range. At a ۱۰۰۰m range with ۳۰۰ nodes, delay increases to ۱۴ms and PDR drops to ۸۸%.Conclusion: AI_MCA outperforms traditional methods like K-Means and MFO, offering a scalable solution for VANET clustering.

نویسندگان

Neda Sedighian

Department of Computer Engineering, Ka.C., Islamic Azad University, Karaj, Iran & Institute of Artificial Intelligence and Social and Advanced Technology, Ka.C., Islamic Azad University, Karaj, Iran.

Abbas Karimi

Department of Computer Engineering, Ka.C., Islamic Azad University, Karaj, Iran & Institute of Artificial Intelligence and Social and Advanced Technology, Ka.C., Islamic Azad University, Karaj, Iran.

Javad Mohammadzadeh

Department of Computer Engineering, Ka.C., Islamic Azad University, Karaj, Iran & Institute of Artificial Intelligence and Social and Advanced Technology, Ka.C., Islamic Azad University, Karaj, Iran.

Faraneh Zarafshan

Department of Computer Engineering, Ka.C., Islamic Azad University, Karaj, Iran & Institute of Artificial Intelligence and Social and Advanced Technology, Ka.C., Islamic Azad University, Karaj, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M.R. Ghori, K. Z. Zamli, N. Quosthoni, M. Hisyam, M. ...
  • S. Ashraf, T. Ahmed, "Machine learning shrewd approach for an ...
  • S. A. Ali Shah, X. Fernando, R. Kashef, "A survey ...
  • S. Abbasi, A. M. Rahmani, A. Balador, A. Sahafi, “A ...
  • B. Saoud, I. Shayea, A. E. Yahya, Z. A. Shamsan, ...
  • M. Mukhtaruzzaman, M. Atiquzzaman, “Stable dynamic predictive clustering (SDPC) protocol ...
  • B. Marzak, K. Guemmat, H. Benlahmar, M. Talea, “Clustering in ...
  • S. R. Ramlee et al., "Implementing of MFO algorithm and ...
  • M.R. Esmaeili, S. H. Zahiri, S. M. Razavi, “A framework ...
  • A. Karimi, I. Rezaei, F. Zar Afshan, “Improving service quality ...
  • M. Ren, L. Khoukhi, H. Labiod, J. Zhang, V. Vèque, ...
  • A. Sharma, S. Saini, “Gauss-sigmoid based clustering routing protocol for ...
  • M. Ayyub, A. Oracevic, R. Hussain, A. Anjum Khan, Z. ...
  • M. Elhoseny, R. S. Rajan, M. Hammoudeh, K. Shankar, O. ...
  • F. Mirhakimi, A. Karimi, “A preliminary study for improving reliability ...
  • A. Sharif, J. P. Li, M. A. Saleem, G. Manogaran, ...
  • G. H. Alsuhli, A. Khattab, Y. A. Fahmy, Y. Massoud, ...
  • M. Bersali, A. Rachedi, H. Bouarfa, M. E. A. Badjara, ...
  • H. Zerrouki, S. Moussaoui, A. Derder, Z. Doukha, “Reinforcement learning-based ...
  • M. K. Jabbar, H. Trabelsi, “Clustering review in vehicular Ad ...
  • M. Aissa, B. Bouhdid, A. B. Mnaouer, A. Belghith, S. ...
  • M. A. Hamza, H. M. Alshahrani, F. N. Al-Wesabi, M. ...
  • Y. Fahmy, G. Alsuhli, A. Khattab, “Optimizing environment-aware VANET clustering ...
  • S. Charoenchai, P. Siripongwutikorn, “Genetic algorithm for multi-hop VANET clustering ...
  • M. Ren, J. Zhang, L. Khoukhi, V. Végue, "A review ...
  • R. K. Karne, T. K. Sreeja, “A novel approach for ...
  • M. Ren, J. Zhang, L. Khoukhi, “A review of clustering ...
  • H. N. Abdulrazzak, G. C. Hock, N. A. Mohamed Radzi, ...
  • Y. Fahmy, G. Alsuhli, A. Khattab, “Optimizing environment-aware vanet clustering ...
  • M. H. Badole, A. D. Thakare, “An evolutionary optimization based ...
  • نمایش کامل مراجع