Using β-Hill Climbing Optimizer to Generate Optimal Test Suite
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 22
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-14-1_008
تاریخ نمایه سازی: 15 بهمن 1404
چکیده مقاله:
kground and Objectives: Software testing plays a vital role in software development, aimed at verifying the reliability and stability of software systems. The generation of an effective test suite is key to this process, as it directly impacts the detection of defects and vulnerabilities. However, for software systems with numerous input parameters, the combinatorial explosion problem hinders the creation of comprehensive test suites. This research introduces a novel approach using the β-Hill Climbing optimizer, an advanced variant of the traditional hill climbing algorithm, to efficiently generate optimal test suites.Methods: The β-Hill Climbing optimizer introduces a dynamic parameter, β, which facilitates a precise balance between exploration and exploitation throughout the search process. To evaluate the performance of this proposed strategy (referred to as BHC), it is compared with TConfig as a mathematical approach, PICT and IPOG as greedy algorithms, and GS, GALP, DPSO, WOA, BAPSO, and GSTG as meta-heuristic methods. These strategies are tested across a variety of configurations to assess their relative efficiency.Results: The reported results confirm that BHC outperforms the others in terms of the size of generated test suites and convergence speed. The statistical analysis of the experimental results on several different configurations shows that BHC outperforms TConfig as a mathematical strategy, PICT and IPOG as greedy strategies, GS, GALP, DPSO, WOA, BAPSO, and GSTG as meta-heuristics by ۸۳%, ۸۸%, ۸۷%, ۶۱%, ۶۱%, ۴۶%, ۶۱%, ۶۲%, and ۷۰%, respectively.Conclusion: The BHC strategy presents a novel and effective approach to optimization, inspired by β-Hill Climbing optimizer for the generation of optimal test suite. Its superior performance in the generation of test suites with smaller size and higher convergence speed compared to other strategies.
کلیدواژه ها:
نویسندگان
Seyyed AmirHossein Eshghazadi
Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
Einollah Pira
Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
Mohammad Khodizadeh-Nahari
Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
Alireza Rouhi
Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :