Mining Student Opinions from MOOC Discussions Using a Multi-Output BERT-Based Deep Learning Approach
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 16
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-14-1_012
تاریخ نمایه سازی: 15 بهمن 1404
چکیده مقاله:
kground and Objectives: Massive Open Online Courses (MOOCs) face unique challenges in extracting student feedback from large, asynchronous student discussion forums. While traditional survey methods are commonly used, they struggle with scalability and real-time analysis in the MOOC context. This study aims to address these limitations and focus on automated extraction and classification of student opinions and their urgency. The study bridges the gap between suggestion mining in commercial applications and educational domains.Methods: We presented a novel deep learning approach using a BERT-based hybrid Convolutional Neural Network (CNN) – Bidirectional Long Short-term Memory (BiLSTM) multi-output model, named CBiLSTM. The model was trained to classify student posts into opinions and further categorize them by urgency. Performance metrics such as F۱-weighted scores, Precision-Recall curves, and Area Under the Curve (AUC) were used to evaluate the model's efficacy, particularly in handling imbalanced datasets.Results: The presented CBiLSTM model got F۱-weighted score of ۸۷.۳% for opinion classification and ۸۱.۱% for urgency classification which represents an improvement of ۱.۳% and ۱.۸% over the best-performing baseline model. Precision-Recall curves and AUC metrics highlights the model's strength in balancing precision and recall. These findings demonstrate the model's capacity to accurately classify and prioritize student feedback in the educational domain.Conclusion: This study offers a robust framework to enhance decision-making processes in MOOCs through effective feedback analysis. The CBiLSTM model provides a scalable, data-driven solution that empowers instructors, course designers, and policymakers to make targeted improvements, and improves student engagement and course quality.
کلیدواژه ها:
نویسندگان
Mujtaba Sultani
Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
Negin Daneshpour
Computer Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :