Sonar target classification using a decision fusion method based on a fuzzy learning automata
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 38
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-14-1_016
تاریخ نمایه سازی: 15 بهمن 1404
چکیده مقاله:
kground and Objectives: Sonar data processing helps in identifying and tracking targets with unstable echoes, which conventional tracking methods often misidentify. Recently, RLA has significantly improved the accuracy of undersea target detection compared to traditional sonar object recognition techniques that tend to lack robustness and precision.Methods: This research utilizes a combination of classifiers to improve the accuracy of Sonar data classification for complex tasks like identifying marine targets. Each classifier creates its own data pattern and maintains a model. Ultimately, a weighted voting process is carried out by the fuzzy learning automata algorithm among these classifiers, with the one receiving the highest votes being the most impactful on performance improvement.Results: We compared the performance of SVM, RF, DT, XGBoost, ensemble methods, R-EFMD, T-EFMD, R-LFMD, T-LFMD, ANN, CNN, TIFR-DCNN+SA, and joint models against the proposed model. Given the differences in objectives and databases, we focused on benchmarking the average detection rate. This comparison examined key parameters including Precision, Recall, F۱_Score, and Accuracy to highlight the superior performance of the proposed method compared to the others.Conclusion: The results obtained with the analytical parameters Precision, Recall, F۱_Score and Accuracy have been examined and compared with the latest similar research and the values of ۸۸.۶%, ۹۰.۲%, ۸۹.۰۲% and ۸۸.۶% have been obtained for each of these parameters in the proposed method, respectively. Also, in this research, the impressive performance of the new method compared to the Sonar data fusion by the conventional learning automata method is evident.
کلیدواژه ها:
نویسندگان
Sajjad Mahmoudikhah
Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
Seyed Hamid Zahiri
Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
Iman Behravan
Department of Electrical Engineering, University of Birjand, Birjand, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :