Improvement of ECG Signal Quality Using Normalized Unbiased Adaptive Filter
محل انتشار: هشتمین کنفرانس بین المللی هوش مصنوعی و چشم انداز آینده آن در علوم مهندسی برق ، کامپیوتر ، مکانیک و مخابرات
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 14
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCPM08_047
تاریخ نمایه سازی: 13 بهمن 1404
چکیده مقاله:
This paper presents a normalized unbiased adaptive noise reduction system for improving the quality of electrocardiogram signals. The proposed system consists of four stages: a two-stage moving average filter for baseline wander removal, an IIR notch filter for power line interference suppression, Gaussian white noise injection as a reference signal, and a normalized adaptive filter based on the gradient descent algorithm for eliminating high-frequency random noise. Unlike conventional methods that require detailed signal feature analysis such as QRS complex detection, the proposed model operates without the need to identify these features. The adaptive process is designed to minimize the instantaneous error between the estimated signal power and the noise-free signal, while the filter coefficients are maintained in normalized form. Performance evaluation was conducted using the MIT-BIH database at various noise levels. Results demonstrate that the proposed model exhibits superior performance compared to the LMS filter and is suitable for clinical applications.
کلیدواژه ها:
نویسندگان
Amir Roostaei
PhD Student, Faculty of Computer, Network and Communications, Imam Hossein University (IHU), Tehran, Iran
Reza Esfahani
Assistant Professor, Department of System Communications, Faculty of Computer, Network and Communications, Imam Hossein University (IHU), Tehran, Iran