Applications of Artificial Intelligence in Disaster Risk Reduction Management in Flood: A Narrative Review
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 12
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_EBHPME-9-4_001
تاریخ نمایه سازی: 5 بهمن 1404
چکیده مقاله:
Background: Floods are among the most frequent and destructive natural disasters globally, exacerbated by climate change, urbanization, and population growth in high-risk areas. The increasing complexity of flood events has intensified the demand for innovative technologies to enhance disaster risk reduction (DRR). This study aims to review the applications of artificial intelligence (AI) in flood-related DRR management.
Methods: A narrative review was conducted following PRISMA guidelines. A comprehensive literature search was performed on July ۱۶, ۲۰۲۵, across Scopus, Web of Science, PubMed, and Google Scholar. Then, keyword combinations targeting AI and flood management were applied to titles, abstracts, and keywords of peer-reviewed articles published between ۲۰۱۵ and ۲۰۲۵. Studies were included if they presented empirical data or technical modeling focused on AI applications in flood risk reduction.
Results: ۲۰ eligible studies revealed diverse AI applications across four key phases: flood prediction, preparedness, emergency response, and post-disaster recovery. Techniques such as machine learning, deep learning, and reinforcement learning improved forecasting accuracy, resource allocation, and damage assessment. However, challenges including data scarcity, model bias, ethical concerns, and limited infrastructure were consistently reported, particularly in vulnerable regions.
Conclusion: AI holds significant promise for enhancing flood DRR, but its implementation requires inclusive design, standardized evaluation frameworks, and stronger community engagement. Future research should prioritize interdisciplinary collaboration to ensure that AI tools are not only technically robust but also socially equitable and contextually relevant.
کلیدواژه ها:
نویسندگان
Ameneh Marzban
Department of Health in Disasters and Emergencies, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
payam Emami
Department of Emergency Medical Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Sanandaj, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :