Hegel, Concepts, and Computation

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 2

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_PHILO-19-53_005

تاریخ نمایه سازی: 5 بهمن 1404

چکیده مقاله:

Gottfried Ploucquet, a teacher at the Tubingen seminary when Hegel was a student there, had been one of the few philosophers to take up Leibniz’s mathematized logic, including his project of reducing logic, and thought itself, to computational processes. In his Science of Logic, Hegel briefly discusses this project when expanding on his own “subjective” logic. The general tenor of the response is predictable. Computational logic seeks to mechanize conceptual processes, but conceptuality itself distinguishes free spiritual beings from machines. Beneath the surface, however, Hegel’s attitude to the relation of computation to conceptual reasoning is more complex. Here I argue that in Book I of his Logic, Hegel, following the approach of Plato in his late dialogues, treats a certain mathematical conception of number, the Neopythagorean triadic monad, as a model for the concept itself. In the section Quantity, Hegel focuses on the incommensurability between discrete and continuous quantities, the numbers of arithmetic and the lines, areas and volumes of geometry. This incommensurability had been discovered by the Pythagoreans and in his later writings, Plato had adopted a proposal for mediating it, attempting to generalize it to a solution of the conceptual incommensurability between the eternal realm of being and the transient realm of becoming.  In line with Plato’s attempt, Hegel presents an account of the development of mathematical practices in which the concept of number from mere counting unit to a triadic form mediating numbers and geometric continua. This structure will in turn provide a model for his own later syllogism. This role for mathematics for Hegel is to be understood as in line with Plato’s later attempts to mediate being and becoming in ways in which eternal Ideas can be approximated in the form of worldly surrogates manifesting this triune structure. Conceptuality cannot be reduced to computation, but relations among computational processes nevertheless reveal much about the nature of conceptuality.

نویسندگان

پل ردینگ

گروه فلسفه، دانشگاه سیدنی، استرالیا

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Antognazza, M. R. (۲۰۰۹). Leibniz: An intellectual biography. Cambridge: Cambridge ...
  • Antognazza, M. R. (۲۰۱۶). God, creatures, and Neoplatonism in Leibniz. ...
  • Aristotle. (۱۹۸۴). The complete works of Aristotle: The revised Oxford ...
  • Barbera, A. (۱۹۸۴). The consonant eleventh and the expansion of ...
  • Barker, A. (۲۰۰۷). The science of harmonics in Classical Greece. ...
  • Brown, M. (۱۹۷۵). Pappus, Plato and the harmonic mean. Phronesis, ...
  • Colombo, M., & Piccinini, G. (۲۰۲۳). The computational theory of ...
  • Davis, M. (۲۰۰۰). The universal computer: The road from Leibniz ...
  • Einarson, B. (۱۹۳۶). On certain mathematical terms in Aristotle’s logic: ...
  • Euclid. (۱۹۵۶). The thirteen books of Euclid’s Elements (T. L. ...
  • Fillion, N. (۲۰۱۹). Conceptual and computational mathematics. Philosophia Mathematica, ۲۷(۲), ...
  • Gill, M. L. (۲۰۱۲). Philosophos: Plato's missing dialogue. Oxford: Oxford ...
  • Hegel, G. W. F. (۱۹۹۱). Elements of the philosophy of ...
  • Hegel, G. W. F. (۲۰۱۰). Science of logic (G. di ...
  • Heath, T. L. (۱۹۲۱). A history of Greek mathematics (۲ ...
  • Hobbes, T. (۱۹۱۴). Human nature and De corpore politico (J. ...
  • Huffman, C. (۱۹۹۳). Philolaus of Croton: Pythagorean and Presocratic. A ...
  • Huffman, C. A. (۲۰۰۱). The Philolaic method: The Pythagoreanism behind ...
  • Isaac, A. M. C. (۲۰۱۸). Computational thought from Descartes to ...
  • Jourdain, P. E. B. (۱۹۱۴). Preface. In L. Couturat, The ...
  • Kahn, C. H. (۲۰۱۳). Plato and the post-Socratic dialogue: The ...
  • Leibniz, G. W. (۱۹۶۶). Leibniz: Logical papers (G. H. R. ...
  • Leibniz, G. W. (۱۹۹۸). Philosophical texts (R. Francks & R. ...
  • Lenzen, W. (۲۰۰۴). Leibniz’s logic. In D. M. Gabbay & ...
  • Louth, A. (۲۰۱۱). Late Patristic developments on the Trinity in ...
  • Marciszewski, W., & Murawski, R. (۱۹۹۵). Mechanization of reasoning in ...
  • Negrepontis, S., Farmaki, V., & Brokou, M. (۲۰۲۰). The central ...
  • Novak, J. A. (۱۹۸۲–۱۹۸۳). Plato and the irrationals. Apeiron, ۱۶(۲), ...
  • Plato. (۱۹۹۷). Complete works (J. M. Cooper, Ed.). Indianapolis: Hackett ...
  • Pozzo, R. (۲۰۱۰). Gottfried Ploucquet. In H. F. Klemme & ...
  • Proclus. (۲۰۰۹). Commentary on Plato’s Timaeus (Vol. ۴, Book ۳, ...
  • Redding, P. (۱۹۹۶). Hegel’s hermeneutics. Ithaca: Cornell University Press ...
  • Redding, P. (۲۰۲۳). Conceptual harmonies: The origins and relevance of ...
  • Redding, P. (۲۰۲۵). Hegel’s treatment of Verhältnis in the Science ...
  • Sayre, K. (۲۰۰۵). Plato’s late ontology: A riddle resolved. Las ...
  • Sellars, W. (۱۹۶۲). Philosophy and the scientific image of man. ...
  • Theon of Smyrna. (۱۹۷۹). Mathematics useful for understanding Plato (R. ...
  • Zellini, P. (۲۰۲۰). The mathematics of the gods and the ...
  • Žižek, S. (۲۰۲۰). Hegel in a wired brain. London: Bloomsbury ...
  • نمایش کامل مراجع