The Use of Meta-Heuristic Methods to Solve Resource-Constrained Project Scheduling and Different Administrative Situations and Allowance to Cut Activities with Cut Costs

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TRANS-3-1_006

تاریخ نمایه سازی: 4 بهمن 1404

چکیده مقاله:

This research presents a comprehensive modeling approach for the project scheduling problem, incorporating cut allowances and multiple administrative methods for each activity while accounting for earliness and tardiness costs. The model aims to optimize project timelines and minimize total cost by balancing the trade-offs between early and late task completion. To solve this complex scheduling problem, a genetic algorithm (GA) was developed and implemented. The performance and effectiveness of the proposed GA were evaluated through a series of computational experiments. For small-sized problems, results were compared against exact solutions obtained using LINGO software, demonstrating the algorithm’s accuracy. For larger-scale problems, evaluation indicators such as solution quality and computational efficiency were employed to assess the GA’s performance. The results indicate that the proposed algorithm consistently produces high-quality solutions within reasonable computational times, confirming its capability to handle both small and large problem instances effectively. Overall, this study provides a robust and efficient algorithmic framework for addressing complex project scheduling problems with multiple administrative options and earliness/tardiness cost considerations, offering practical guidance for project managers aiming to optimize project execution and resource allocation.

نویسندگان

A. Asgari

Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University

B. Afshar Nadjafi

۱Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Shou, Y., Li, Y., & Lai, C. (۲۰۱۵). Hybrid particle ...
  • Seifi, M., et al. (۲۰۱۱). Solving problem of single machine ...
  • Haddad, M., et al. (۲۰۱۰). Development of Tabu Search algorithm ...
  • Joulaie, F., et al. (۲۰۰۹). Use of genetic algorithms for ...
  • Najafi, B., et al. (۲۰۰۸). An algorithm for project scheduling ...
  • Cheng, J., Fowler, J., Kempf, K., & Mason, S. (۲۰۱۴). ...
  • نمایش کامل مراجع