A Review of Deep Learning Methods for Financial Market Prediction

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 7

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TRANS-2-3_005

تاریخ نمایه سازی: 4 بهمن 1404

چکیده مقاله:

Financial market prediction plays a crucial role for investors and financial institutions aiming to optimize returns and minimize risks. Over the past decades, considerable research has focused on developing effective and accurate methods for forecasting financial market trends. Traditional statistical models often face limitations in capturing the nonlinear and complex dynamics of financial time series. In contrast, deep learning techniques provide advanced analytical and predictive frameworks capable of uncovering latent structures and intricate patterns within large-scale financial datasets. This study systematically reviews recent deep learning approaches applied to the prediction of financial time series, including recurrent neural networks (RNNs), long short-term memory networks (LSTMs), convolutional neural networks (CNNs), and hybrid models. We evaluate these methods based on their architecture, data representation, and predictive performance, highlighting their respective strengths and weaknesses. Our analysis demonstrates that deep learning algorithms exhibit superior capabilities in modeling nonlinear dependencies and temporal correlations in financial data, enabling accurate forecasting of stock prices, indices, and other market indicators. Furthermore, while individual network architectures perform effectively, combining recurrent and convolutional layers often enhances prediction accuracy and robustness. The findings underscore the potential of deep learning as a powerful tool for financial decision-making, offering valuable insights for both researchers and practitioners in the field of computational finance.

نویسندگان

A. Karimi Dastgerdi

Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

F. Zamani Boroujeni

Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Pinches, G. E. (۱۹۷۰). The random walk hypothesis and technical ...
  • Hrasko, R., Pacheco, A. G., & Krohling, R. A. (۲۰۱۵). ...
  • Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V. K., & ...
  • نمایش کامل مراجع