Integration of Production Planning and Non-Cyclic Preventive Maintenance Scheduling for Multi-State Systems

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TRANS-6-3_006

تاریخ نمایه سازی: 4 بهمن 1404

چکیده مقاله:

In various levels of manufacturing sectors, it is commonly assumed that preventive maintenance (PM) directly affects production scheduling and machine availability (i.e., reducing downtime). Surprisingly, however, the interaction between these factors is often overlooked. Maintenance planning is generally classified into cyclic and non-cyclic approaches. Among these, non-cyclic strategies provide more realistic and effective plans. The core principles of maintenance management advocate for implementing non-cyclic preventive actions in processes while minimizing corrective repairs and component replacements. This perspective simultaneously enables informed decision-making regarding both preventive maintenance and the corresponding production schedules. The integrated strategy of monitoring and preventive maintenance aims to fulfill production plans while minimizing the total associated costs including those related to maintenance (both preventive and corrective), setup, support, and production. This study proposes the integration of non-cyclic preventive maintenance scheduling with production planning in a multi-component system environment. An integrated model is developed to optimize decisions related to both maintenance and production scheduling. To efficiently solve the model and achieve high-quality solutions within a reasonable computation time, the Simulated Annealing (SA) metaheuristic algorithm is employed.

کلیدواژه ها:

Non-Cyclic Preventive Maintenance Planning ، Production Planning and Scheduling ، Metaheuristic Algorithms ، Simulated Annealing Algorithm

نویسندگان

M. Haghdoust Komayi

Payame Noor University, Kish Branch, Kish, Iran

S. I. Seyyedi

Payame Noor University, Kish Branch, Kish, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Yao, X., Xie, X., Fu, M. C., & Marcus, S. ...
  • https://doi.org/۱۰.۱۰۰۲/nav.۲۰۱۰۷Su, J., Huang, J., Adams, S., Chang, Q., & Beling, ...
  • نمایش کامل مراجع