Short-Term Forecasting of Gold Prices in the Forex Market Using Deep Neural Networks and Price Action Strategy
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TRANS-7-1_001
تاریخ نمایه سازی: 4 بهمن 1404
چکیده مقاله:
Gold is widely recognized as one of the most volatile and potentially profitable financial instruments, yet it can also result in significant losses. Consequently, even small price movements can generate substantial gains or losses for traders. In the present study, we developed a machine learning model for short-term forecasting of gold prices with a minimum expected accuracy of ۶۰%. The forecasting problem was formulated as a binary classification task. Considering sound capital management principles, a model with ۶۰% predictive accuracy can enable a trader to achieve profitability in the financial market. Assuming an initial capital of ۱۰۰ per trade, a profit of ۱ per successful trade, a loss of ۱ per unsuccessful trade (i.e., a risk-reward ratio of ۱:۱), and a model success rate of at least ۶۰%, one could achieve a net gain of ۱۰ or a ۱۰% return over ۱۰۰ trades—an acceptable result. After building and optimizing the model, we achieved an accuracy of ۶۶%, approximately ۶% higher than the baseline assumption. To further improve model reliability and validate predictions, we tested the model using weekly and monthly data. The model performed poorly on weekly data, likely due to the limited sample size at this time scale. In contrast, the model demonstrated acceptable accuracy on monthly data, suggesting its utility for validating daily predictions. Monthly data typically contain lower noise and volatility than other time frames, which may explain the higher accuracy observed at this scale. For comparison with previous studies, we selected two articles that predicted gold prices as a regression task and one article that predicted price direction. Results indicate that the proposed method has two key advantages over prior approaches: ۱) the predictive power of deep neural networks and ۲) the effectiveness of incorporating the price action methodology—particularly the inside bar technique—in forecasting gold price direction.
کلیدواژه ها:
نویسندگان
M. Fariabi Yeknami
Master’s Student in Software Engineering, Imam Khomeini International University, Qazvin, Iran
Z. Yaghoubi
Assistant Professor, Department of Computer Engineering, Imam Khomeini International University, Qazvin, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :