Determining the Factors Affecting the Incidence of Hypertension in Pregnant Women Using Data Mining Techniques

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TRANS-1-2_001

تاریخ نمایه سازی: 1 بهمن 1404

چکیده مقاله:

Hypertensive disorders in pregnancy are recognized as one of the major complications during gestation, posing serious risks to both the mother and the fetus. These disorders can result in stillbirths and preterm deliveries among otherwise normal pregnancies and are considered the third leading cause of maternal mortality worldwide. However, their exact etiology remains largely unknown. The main objective of this study was to identify the demographic factors influencing the incidence of hypertension in pregnant women using data mining algorithms. The study database included ۴,۸۱۸ records and ۸۰ features, extracted from electronic health records registered in the Tehran University of Medical Sciences health centers through the SIB system of the Ministry of Health and Medical Education. The study followed the CRISP-DM methodology for implementation. Due to class imbalance in the dataset, modeling was performed in two ways: (۱) using basic algorithms such as C۵.۴ decision tree, ID۳, CHAID, and artificial neural networks; and (۲) using ensemble methods that combined bagging and boosting with the aforementioned algorithms. According to the developed models, the most significant predictors of hypertension in pregnant women included negative Rh factor, maternal age, nutritional habits (consumption of fruits, salt, and type of oil), history of preeclampsia, smoking, marital status, and presence of other hypertensive risk factors. The results showed that the hybrid model combining C۵.۴ and CHAID decision trees achieved the highest accuracy (۷۵%) in classifying hypertensive cases. The bagging ensemble with C۵.۴ and ID۳ improved accuracy by ۴.۱۷%, while the bagging–neural network combination increased it by ۳۰%. Other models employing bagging and boosting techniques did not show notable improvements.

نویسندگان

Sh. Borhani

M.Sc. in Software Engineering, IT Supervisor, Virtual School, Tehran University of Medical Sciences, Tehran, Iran

M. Mohammadi Zanjireh

Assistant Professor, Department of Computer Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

F. Haj Ali Asgari

Deputy of Administration and Finance, Virtual School, Tehran University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :