An accurate computational approach for solving system of differential equations involving non-local derivatives
محل انتشار: مجله مدلسازی ریاضی، دوره: 14، شماره: 1
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 10
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-14-1_002
تاریخ نمایه سازی: 1 بهمن 1404
چکیده مقاله:
This paper addresses the numerical approximation of a system of differential equations involving fractional derivatives of arbitrary order. The derivatives are governed in the Caputo sense of orders \alpha_i \in(۰,۱). Motivated by the complexity of modeling coupled fractional dynamics, an efficient numerical scheme based on the classical L۱ discretization technique is developed. The proposed method effectively captures the behavior of the system across various fractional orders and parameter regimes. A rigorous convergence analysis confirms the consistency of the proposed technique and establishes a convergence rate of order \min_{p}\{۲ - \alpha_p\}. Numerical experiments are conducted to validate the theoretical findings, demonstrating excellent agreement with exact solutions and confirming the computational efficiency of the approach. These results highlight the robustness of the proposed scheme for solving the differential system with memory effects.
کلیدواژه ها:
نویسندگان
Gaurav Saini
Assistant Professor Center for Data Science, Department of Computer Science and Engineering, Siksha `O&#۰۳۹; Anusandhan (Deemed to be University)
Bappa Ghosh
Assistant Professor Center for Artificial Intelligence and Machine Learning Department of Computer Science and Engineering, Siksha `O' Anusandhan (Deemed to be University)
Sunita Chand
Professor Department of Mathematics, Siksha `O&#۰۳۹; Anusandhan (Deemed to be University)