Tau-collocation method for weakly singular Volterra integral equations and related special cases
محل انتشار: مجله مدلسازی ریاضی، دوره: 14، شماره: 1
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 0
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-14-1_009
تاریخ نمایه سازی: 1 بهمن 1404
چکیده مقاله:
The present study examines the implementation of the tau-collocation method for solving a class of Volterra integral equations and related cases which their kernels contain (special) weak singularity of type (x^۲-s^۲)^{-۱/۲}. These types of equations can be written in the form of the so-called \textit{cordial} Volterra integral equations and so inherit their properties. We will recall some conditions on the kernel and forcing function for which the existence and uniqueness of a solution has been proven. Then we will discuss regularity conditions for the solution of same types equations which indicate that unlike the standard Volterra integral equations with singularity of the form (x-s)^{-\alpha}, ۰<\alpha<۱, these types of equations have regular solutions if the kernel and forcing functions are sufficiently smooth. This property allows us to use the classical Jacobi polynomials as a basis functions for collocation method. For this method, we will first derive a matrix formulation that makes it easy to implement. We will prove convergence of the method by providing an error bound.
کلیدواژه ها:
نویسندگان
Sedaghat Shahmorad
Department of Applied Mathematics, University of Tabriz, Tabriz-Iran
Mahdi Mostafazadeh
Department of Applied Mathematics, University of Tbariz, Tabriz
Fevzi Erdogan
Department of Mathematics, Van Uzuncu Yil University, Van, Turkey