Enhancing support vector machine performance through boundary-focused covariance matrix learning
محل انتشار: مجله مدلسازی ریاضی، دوره: 14، شماره: 1
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 4
فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-14-1_016
تاریخ نمایه سازی: 1 بهمن 1404
چکیده مقاله:
Support Vector Machine (SVM) has proven effective in various classification tasks by focusing on maximizing the margin between classes. However, standard SVM often fails to consider the underlying geometric structure of data near the decision boundary, particularly in scenarios where class overlap or noise occurs. This paper proposes a new method that focuses on boundary-critical samples those near the decision boundary by integrating their covariance matrix into the learning process. The principal eigenvector of this covariance matrix is then utilized to guide the classifier towards the most informative regions of the data, enabling it to capture the local geometry better. Importantly, this modification is confined to the objective function, ensuring the convexity of the optimization problem is preserved. Experimental results across various datasets, including linearly and non-linearly separable ones, demonstrate that the proposed method provides competitive or slightly improved classification performance.
کلیدواژه ها:
نویسندگان
Afsaneh Pourmoezi
University of Mazandaran
Ali Tavakoli
University of Mazandaran
Mostafa Eslami
University of Mazandaran