Improved lower bound of spatial analyticity radius for solutions to nonlinear wave equation

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 16

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-14-1_020

تاریخ نمایه سازی: 1 بهمن 1404

چکیده مقاله:

In this paper, the rate of decay for the radius of spatial analyticity for solutions of the nonlinear wave equation \[\partial_t^۲ u -\Delta u + |u|^{p-۱}u=۰, \] on \mathbb{R}^d\times\mathbb{R} is studied. In particular, for aclass of analytic initial data with a uniform radius of analyticity \sigma_۰, we obtain an asymptotic lower bound \sigma(t)\ge a_۰|t|^{-\frac۲۳} when d=۱ and \sigma(t)\ge a_۰|t|^{-\frac۳۲} when d=۲ on the uniform radius of analyticity \sigma(t) of solution u(\cdot,t) as |t|\rightarrow +\infty . This is an improvement of the work [D.~O.~da~Silva, A.~J.~Castro, Global well-posedness for the nonlinear wave equation in analytic Gevrey spaces, J. Differential Equations ۲۷۵(۲۰۲۱)~۲۳۴--۲۴۹], where the authors obtained a decay rate of order \sigma(t)\geq a_۰(۱+|t|)^{-(\frac{p+۱}{۲})} when d=۱ and \sigma(t)\geq a_۰(۱+|t|)^{-(\frac{p+۱-\epsilon}{۱-\epsilon})} when d=۲ as |t|\rightarrow +\infty for large time t, where \epsilon>۰ is arbitrary. We used an approximate conservation law in a modified Gevrey space, contraction mapping principle, interpolation and Sobolev embedding to obtain the results.

کلیدواژه ها:

نویسندگان

Tegegne Getachew

Department of Mathematics, Mekdela Amba University, Ethiopia

Betre Shiferaw

Department of Mathematics, Mekdela Amba University, Ethiopia