Advanced Approaches to Approximating Cubic and Radical Cubic Functional Equations in G\beta-Normed Spaces

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 2

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MACO-5-1_008

تاریخ نمایه سازی: 24 دی 1404

چکیده مقاله:

This article investigates the approximation of cubic and radical cubic functional equations in \( G \)-normed and \( G\beta \)-normed vector spaces. We define these spaces and employ the Hyers-Ulam-Rassias stability methods to establish the stability of these functional equations. This study illuminates the stability properties of these equations in \( G \)-normed and \( G\beta \)-normed spaces, providing useful insights into their behavior and mathematical properties,During a noteworthy speech at the Mathematical Club of the University of Wisconsin in the autumn of ۱۹۴۰, Ulam \cite{Ulam} addressed a set of unanswered questions. This lecture marked the beginning of the development of functional equation stability theory. ``If the suppositions of the theorem holds approximately, can we claim that the corresponding theorem will also hold approximately?" Ulam asked when introducing the stability problem. The essence of the stability problem for functional equations lies in its fundamental question: ``If an approximate solution exists for a given functional equation, can this approximation effectively approach an exact solution for the same equation?" In cases where the response is positive, we designate the specific equation as possessing stability.

نویسندگان

- -

Department of Mathematics, Behbahan Khatam Alanbia University of Technology- Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. R. Abdollahpour and M. Th. Rassias, Hyers-Ulam stability of ...
  • M. R. Abdollahpour, R. Aghayari, and M. Th. Rassias, Hyers-Ulam ...
  • Z. Alizadeh and A. G. Ghazanfari, On the stability of ...
  • T. Aoki, On the stability of the linear transformation in ...
  • G. Forti, Hyers-Ulam stability of functional equations in several variables. ...
  • P. A. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of ...
  • D. H. Hyers, On the stability of the linear functional ...
  • K. W. Jun and H. M. Kim, The generalized Hyers-Ulam-Rassias ...
  • S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear ...
  • L. Jung Rye, C. Park, and Th. M. Rassias, Hyers–Ulam–Rassias ...
  • P. Kannappan, Functional Equations and Inequalities with Applications. Springer, Waterloo, ...
  • K. A. Khan, Generalized normed spaces and fixed point theorems. ...
  • S. M. S. Modarres Mosadegh and E. Movahednia, Stability of ...
  • S. A. Mohiuddine, K. Tamilvanan, M. Mursaleen, and T. Alotaibi, ...
  • E. Movahednia and M. D. L. Sen, A new approach ...
  • M. Mursaleen, S. A. Mohiuddine, On stability of a cubic ...
  • M. Mursaleen and J. A. Khursheed, Stability results in intuitionistic ...
  • M. Mursaleen and J. A. Khursheed, The stability of a ...
  • C. Park, Hyers-Ulam stability of a Pexiderized trigonometric functional equation. ...
  • C. Park, M. Eshaghi Gorgji and R. Saadati, Random homomorphisms ...
  • C. Park, E. Movahednia, S. M. S. M. Mosadegh, and ...
  • C. Park and M. Th. Rassias, Additive functional equations and ...
  • Th. M. Rassias, On the stability of the linear mapping ...
  • N. Salehi and S. M. S. Modarres, A fixed point ...
  • S. M. Ulam, Problems in Modern Mathematics. Wiley, New York, ...
  • نمایش کامل مراجع