Forecasting Key Global Factors using Hybrid Artificial Neural Networks and the Mackey-Glass Nonlinear Differential Equation
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GADM-10-2_008
تاریخ نمایه سازی: 24 دی 1404
چکیده مقاله:
Accurate prediction of environmental and socio-economic indicators is of great importance for global development in all areas and for assessing risks related to climate change. In this study, artificial neural networks (ANNs) based on multilayer perceptron (MLP), long short-term memory (LSTM) and hybrid artificial neural networks, with and without the Mackey-Glass Nonlinear Differential Equation (MG), were used to predict world population, per capita gross domestic product (GDP), fossil fuel consumption and CO_۲ emissions. Historical data were collected from official and reliable international sources for the years ۱۹۹۰ to ۲۰۲۲. To evaluate the performance of the proposed models, a set of reliable indicators including root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R^۲) were used. The results show that the hybrid neural network models that used the Mackey-Glass delayed differential equation significantly reduced the forecast error in all evaluation indices for all different variables. The Mackey-Glass equation improved the MAPE index by ۱۲.۵\% {}{}and increased the R^۲ index by ۸.۷\%. In addition, the results of the sensitivity analysis show that the models are sensitive to the choice of input features, data preprocessing, and network architecture design. The differences between the model outputs highlight the need to pay close attention to the model complexity and how to represent the time series dynamics in long-term forecasts. Overall, the findings indicate that the hybrid neural models augmented with the nonlinear delayed differential equation provide a more accurate and reliable picture of future global trends. The results have important implications for climate policy design, global energy planning, and sustainable development strategies.
کلیدواژه ها:
Prediction models ، Artificial Neural Networks ، Mackey–Glass nonlinear differential equation ، carbon dioxide emissions
نویسندگان
Shahram Badamchizadeh
Biosystem department, Agricultural Research Institute, Iranian Research Organization for science and Technology
Ali Zenouzi
Biosystem department, Agricultural Research Institute, Iranian Research Organization for science and Technology
Sharareh Harirchi
Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran P.O. Box ۳۳۵۳-۵۱۱۱, Iran
Navid Baseri
General Office of Information Technology, Iranian Research Organization for Science and Technology
Abbas Tamjidi
Department of Wood and Paper Science and Technology, Ka.C., Islamic Azad University, Karaj, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :