Firefly Optimization Algorithm for Multi-Objective Job Scheduling in Cloud Computing

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 6

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JRMDE-4-4_008

تاریخ نمایه سازی: 18 دی 1404

چکیده مقاله:

Due to the increasing use of the Internet of Things, efficient task scheduling in cloud computing has become increasingly important with the aim of maximizing the use of available resources, reducing energy consumption, and enhancing the quality of service (QoS). In this paper, we use the Firefly Optimization (FFO) algorithm to improve scheduling efficiency and minimize the overall completion time in cloud environments. For this purpose, twelve distinct scenarios were designed in the Cooja Contiki simulator environment with the perspective of computationally intensive, input/output intensive, and mixed workloads, and the overall completion time results obtained with the Min-Min and GA-PSO-Min methods were compared and the better performance of the method was confirmed. Due to the increasing use of the Internet of Things, efficient task scheduling in cloud computing has become increasingly important with the aim of maximizing the use of available resources, reducing energy consumption, and enhancing the quality of service (QoS). In this paper, we use the Firefly Optimization (FFO) algorithm to improve scheduling efficiency and minimize the overall completion time in cloud environments. For this purpose, twelve distinct scenarios were designed in the Cooja Contiki simulator environment with the perspective of computationally intensive, input/output intensive, and mixed workloads, and the overall completion time results obtained with the Min-Min and GA-PSO-Min methods were compared and the better performance of the method was confirmed.

کلیدواژه ها:

Firefly Optimization Algorithm ، Internet of Things ، Cloud Computing ، Job Scheduling ، Total Time Spent ، Efficiency in Energy Use ، Scalability and Multi-Objective Optimization

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abedinzadeh, M. H., & Akyol, E. (2023). A multidimensional opinion ...
  • Adaniya, M. H., Carvalho, L. F., Zarpelão, B. B., Sampaio, ...
  • Adaniya, M. H., Lima, M. F., Rodrigues, J. J., Abrão, ...
  • Ahmed, A. A., & Maheswari, D. (2017). Churn prediction on ...
  • Alazzam, H., Alhenawi, E., & Rizik, A. (2019). A hybrid ...
  • Boroumand, A., Hosseini Shirvani, M., & Motameni, H. (2025). A ...
  • Chen, M., Xu, J., Zhang, W., & Li, Z. (2025). ...
  • Devaraj, A. F. S., Elhoseny, M., Dhanasekaran, S., Lydia, E. ...
  • Ghobaei-Arani, M., Jabbehdari, S., & Mohammad Ali, P. (2018). An ...
  • Khaledian, N., Razzaghzadeh, S., Haghbayan, Z., & Völp, M. (2025). ...
  • Khezri, E., Yahya, R. O., Hassanzadeh, H., Mohaidat, M., Ahmadi, ...
  • Kolias, C., Kambourakis, G., Stavrou, A., & Gritzalis, S. (2015). ...
  • Kushwaha, S., & Singh, R. S. (2025). Deadline and budget-constrained ...
  • Lakshmana Rao, K., Sireesha, R., & Shanti, C. (2021). On ...
  • Liaquat, S., Saleem, O., & Azeem, K. (2020). Comparison of ...
  • Liu, Z., Zhang, J., Li, Y., Bai, L., & Ji, ...
  • Long, G., Wang, S., & Lv, C. (2025). QoS-aware resource ...
  • Mahdi, M. S., & Hassan, N. F. (2018). Design of ...
  • Mokhtari, V., Mikaeilvand, N., Mirzaei, A., Nouri-moghaddam, B., & Gudakahriz, ...
  • Murad, S. A., Azmi, Z. R. M., Muzahid, A. J. ...
  • Muradi, S. S., Badeel, R., Abdulkarim Alsandi, N. S., Alshaaya, ...
  • Pan, J. S., Yu, N., Chu, S. C., Zhang, A. ...
  • Paulraj, D., Sethukarasi, T., Neelakandan, S., Prakash, M., & Baburaj, ...
  • Pradhan, A., Das, A., & Bisoy, S. K. (2025). Modified ...
  • Reddy, G. N., & Kumar, S. P. (2017). Multi objective ...
  • Shandilya, S. K., Choi, B. J., Kumar, A., & Upadhyay, ...
  • Sobhanayak, S., Kumar, T. A., & Sahoo, B. (2018). Task ...
  • Tuba, E., Tuba, M., & Beko, M. (2018). Two stage ...
  • Yang, X. S. (2008). Nature-Inspired Metaheuristic Algorithms (Vol. 12). Luniver ...
  • Yu, G. (2020). A modified firefly algorithm based on neighborhood ...
  • Zade, B. M. H., Mansouri, N., & Javidi, M. M. ...
  • Zhang, H., Zou, Q., Ju, Y., Song, C., & Chen, ...
  • Zhao, Y., Liang, H., Zong, G., & Wang, H. (2023). ...
  • نمایش کامل مراجع