Architecting Intelligent Revenue Systems: AI-Driven Transformation in B۲B SaaS Platforms

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 7

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICIMM03_005

تاریخ نمایه سازی: 17 دی 1404

چکیده مقاله:

This research examines artificial intelligence transformation of traditional sales processes into automated revenue systems within B۲B SaaS environments. Through systematic literature analysis of contemporary publications (۲۰۲۳-۲۰۲۴) and comprehensive case study of HubSpot implementation, we investigate AI architectural foundations for lead-to-cash automation. Our mixed-methods approach reveals machine learning ensembles achieve ۹۴% accuracy in lead qualification while AI-CRM integration reduces sales cycles by ۴۱%. The HubSpot case demonstrates ۳۵% increase in qualified leads and ۲۷% improvement in deal closure rates through strategic human-AI collaboration. Quantitative analysis shows significant improvements in marketing efficiency and sales productivity. AI-driven systems substantially enhance revenue predictability and operational performance, though data quality management and ethical implementation challenges require continued attention. This study provides validated architectural guidance for organizations pursuing AI-powered revenue transformation in competitive digital markets.

نویسندگان

Mahsa Yaghoubzadeh

MSc in Business Management, E-Commerce, Arak,Iran