Improving µCT image segmentation through architectural enhancements in the U-Net model

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 13

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMGE-59-4_012

تاریخ نمایه سازی: 16 دی 1404

چکیده مقاله:

Micro-Computed Tomography (µCT) is an indispensable non-destructive technique for characterizing the internal microstructures of materials like porous media, but any quantitative analysis hinges on accurate image segmentation—a task complicated by image noise, poor contrast, and intricate features. While deep learning, and the U-Net architecture in particular, has shown considerable promise in automating this process, this study presents a comparative analysis between the standard U-Net and a bespoke, modified architecture for segmenting multi-phase micro-computed tomography (µCT) images of Bentheimer sandstone. Our modified U-Net introduces several architectural enhancements: optimized convolutional blocks for superior feature extraction, spatial dropout for more effective regularization, and L۲ weight regularization to mitigate overfitting. We trained both models on ۲D slices from two core samples and subsequently evaluated them against an independent blind test set of ۱۸۷۲ slices from a third core, which contained four distinct phases: porosity, quartz, clay, and feldspar. The quantitative results reveal that the modified U-Net decidedly outperforms its standard counterpart, achieving a macro-averaged Dice Similarity Coefficient (DSC) of ۰.۹۲ versus ۰.۸۸, and a macro-averaged Intersection over Union (IoU) of ۰.۸۵ versus ۰.۸۰. Most notably, our model demonstrated substantial gains in segmenting the challenging minority phases; the DSC for clay surged from ۰.۷۱ to ۰.۸۵, and for feldspar, it rose from ۰.۸۵ to ۰.۸۷, all while maintaining stable performance on the majority phases of porosity and quartz. These statistical improvements are corroborated by qualitative visual assessments, which confirm superior boundary delineation and a reduction in misclassifications. Ultimately, our findings indicate that the proposed architectural refinements yield a more accurate and robust segmentation model for micro-computed tomography (µCT) imagery, providing a more reliable foundation for downstream Digital Rock Physics (DRP) applications critical to the mining and geo-engineering sectors, such as geomechanical stability assessment and mineral liberation analysis.

نویسندگان

Shahin Mahmoudi

Civil and Environmental Engineering Dept, School of Mining & Petroleum Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada.

Mirsaleh Mirmohammadi

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Omid Asghari

Civil and Environmental Engineering Dept, School of Mining & Petroleum Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :