Novel Enhanced Cognitive State Analysis in E-Learning via Real-Time Emotion and Attentiveness Detection Using OptFuzzy TSM and ABiLSTM
محل انتشار: مجله سیستم های فازی، دوره: 22، شماره: 4
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 7
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-22-4_004
تاریخ نمایه سازی: 16 دی 1404
چکیده مقاله:
The emotional state of an online learner has drawn a lot of attention. Accurately predicting a student's emotional state can improve learning outcomes through designated mediation. Still, keeping an eye on and sustaining students attention in online classes is challenging because there isn't any immediate supervision. To identify these challenges based on the learner's emotional states, this paper presents a novel, efficient, Optimized Fuzzy approach and signifies solutions to inspire the learner. The Improved Multi-Task Cascaded Convolutional Networks (IMTCNN) are used to identify the face region in real time. Different emotions are classified by analyzing extracted facial expressions using an Optimized Takagi-Sugeno and Mamdani fuzzy systems (Fuzzy TSM) approach. With the Enhanced Mother Optimization Algorithm (EMO), the hyperparameters in the classification approach are optimized. The proposed method determines whether learners are attentive or inattentive during online learning sessions by computing an Attention-based bi-directional long-short term memory (ABiLSTM) to predict cognitive states. To improve learning efficiency and productivity, users receive real-time feedback. The proposed approach can give instructors ongoing feedback, allowing them to modify the way they teach and keep students interested and engaged. With recognition rates of over ۹۸.۲۱% accuracy on the proposed datasets, the study's results are encouraging and outperforming those of other approaches.
کلیدواژه ها:
E-learning ، cognitive state ، dual Mamdani and neuro-fuzzy inference system ، Archerfish Hunting Optimization Algorithm (AHOA) ، Improved Position Enhancement Faster Network (IPEFNet)
نویسندگان
Jignesh Vaniya
Department of Information Technology, Vishwakaram Government Engineering College, Chandkheda, Ahmedabad, Gujarat ۳۸۲۴۲۴, India
Maleyka Alizada
Department of History, Western Caspian University, Azerbaijan, Urban
Pooja Nagpal
CMS Business School, Jain (Deemed to be University), Bengaluru, India
Biplab Kumar Dey
Department of Commerce, Shaheed Bhagat Singh College, University of Delhi, India
Dr. Gulara Alesger Abbbasova
Department of Social Sciences, Azerbaijan University of Architecture and Construction, Urban
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :