Strong Robust Similarity Measures: A Detailed Analysis and Application
محل انتشار: مجله سیستم های فازی، دوره: 23، شماره: 1
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 7
فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-23-1_004
تاریخ نمایه سازی: 16 دی 1404
چکیده مقاله:
Similarity measures are fundamental tools for comparing and evaluating data across various domains. Robust similarity measures extend classical similarities. However, when dealing with interval data, robust measures are often insufficient due to the intrinsic properties of intervals. In this study, we introduce the concept of strong robust similarity measures, which incorporate three additional axioms specifically considered to manage uncertainty represented by intervals. Furthermore, we characterize these measures through a novel class of functions, referred to as preinclusions. We also provide a comprehensive analysis of the proposed measures, examining their behaviour with respect to different axioms. Finally, we illustrate the applicability of our approach through a real-world case study using meteorological data collected by AEMET (the Spanish National Weather Service) in ۲۰۲۱.
کلیدواژه ها:
نویسندگان
Pedro Huidobro
Department of Statistics and Operational Research and Mathematics Didactics, University of Oviedo, Spain
Agustina Bouchet
Department of Statistics and Operational Research and Mathematics Didactics, University of Oviedo, Spain
Noelia Rico
Department of Computer Science. University of Oviedo, Spain
Irene Díaz
Department of Computer Science, University of Oviedo, Spain
Susana Montes
Department of Statistics and Operational Research and Mathematics Didactics, University of Oviedo Oviedo, Spain
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :