Machine Learning Approaches for the Performance Evaluation of Shear Strengthened Reinforced Concrete Beams using BFRP Composites with Different Wrapping Methods

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 13

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-39-9_014

تاریخ نمایه سازی: 15 دی 1404

چکیده مقاله:

An analytical investigation on the use of basalt reinforced polymer (BFRP) composites for the shear capacity enhancement of reinforced concrete (RC) beams is presented in this study. The focus is on investigating the influence of BFRP composites and different wrapping techniques on RC beam’s shear strengthening. The aim is to address the insufficient shear strength capacity of RC beams while ensuring sufficient flexural moment capacity. To achieve this, the beams are designed with two shear regions: one region with sufficient shear strength and another region with inadequate shear strength. The beams with insufficient shear strength are strengthened using BFRP composites through full wrapping, side and U wrapping techniques. The specimens are subjected to four-point flexural tests to monitor the variations in shear strength and displacement. The analytical investigation using ABAQUS software emphasizes the outcomes with empirical data to evaluate the efficacy of the various configurations strengthening. The outcomes underscore that the side wrapping and U strip wrapping techniques yield superior outcomes among the examined strengthening configurations in relation to shear enhancement. The validated analytical models corroborated these outcomes, providing a pragmatic framework for engineers to execute temporary retrofitting methodologies. Furthermore, this study underscores the paramount importance of integrating machine learning (ML) models in forecasting the performance of shear-strengthened RC beams utilizing basalt-reinforced fiber polymer (BRFP) across diverse wrapping configurations. Model performances were compared with statistical indicators. In addition, SHAP analysis was also performed to assess the relative importance of each input parameter on the output results.

کلیدواژه ها:

Reinforced C Beams Basalt Fiber Reinforced Polymer Reinforced Polymer ConfigurationsShear Strength Beam StrengtheningComputational ModellingMachine Learning

نویسندگان

M. K. Praveenakumari Kumari

Nitte (Deemed to be University), NMAM Institute of Technology, Department of Master of Computer Applications, Nitte, Karnataka, India

B. M. Kiran

Department of Civil Engineering, Adi Chunchanagiri Institute of Technology, Chikkamagaluru, Karnataka, India

M. B. Srinivasa

Department of Civil Engineering, Centre for PG Studies, Visvesvaraya Technological University, Mysuru, Karnataka, India

C. L. Mahesh Kumar

Nitte (Deemed to be University), Nitte Meenakshi Institute of Technology, Department of Civil Engineering, Bengaluru, Karnataka, India

A. Ranjith

Nitte (Deemed to be University), NMAM Institute of Technology, Department of Civil Engineering, Nitte, Karnataka, India

G. Acharya

Nitte (Deemed to be University), NMAM Institute of Technology, Department of Civil Engineering, Nitte, Karnataka, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Belarbi A, Bae S-W, Brancaccio A. Behavior of full-scale RC ...
  • Major Z, Bodnár L, Merczel DB, Szép J, Lublóy É. ...
  • Alsuwaidi H, Habib A, Al-Sadoon ZA, Maalej M, Altoubat S, ...
  • Badawi MI, Badawi MI, Awwad M. Investigation of an Innovative ...
  • Saribiyik A, Abodan B, Balci MT. Experimental study on shear ...
  • Chen J-F, Teng J. Shear capacity of FRP-strengthened RC beams: ...
  • Rainio O, Teuho J, Klén R. Evaluation metrics and statistical ...
  • نمایش کامل مراجع