Regulatory Approaches to AI Auditing in Asia: Promoting Fairness and Mitigating Bias
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 11
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMAE-13-1_006
تاریخ نمایه سازی: 15 دی 1404
چکیده مقاله:
This paper examines the regulatory landscape that controls AI fairness and bias in the financial auditing domains in five major Asian jurisdictions (China, Singapore, South Korea, Japan and India), which aims to identify gaps and provide the recommendations to ensure ethical AI deployment in auditing. Considering the fact that artificial intelligence is being actively integrated in the field of financial auditing, it is crucial to have a full overview of the corresponding regulatory frameworks and align them, which will allow the deployment of artificial intelligence ethically. The study has employed a qualitative, comparative legal and policy analysis to map and evaluate the current standards, laws, and official guidelines related to AI fairness in auditing within selected countries. Analysis reveals a dynamic but fragmented regulatory environment. While the theory of AI fairness is widely accepted, nations have adopted quite different regulatory strategies. These range from binding laws in countries such as China and South Korea to voluntary outlines in Singapore and Japan, while others, such as India, rely on adopting existing laws. However, a significant difference in all these jurisdictions is clear: the absence of specific, applied rules for auditing of AI systems. This deficiency highlights several major challenges, including defining fairness in an audit context, ensuring data quality, balancing transparency with intellectual property rights and developing the necessary institutional capacity. As a result, the current framework is considered insufficient to address the practical demands of AI Fairness Auditing.
کلیدواژه ها:
نویسندگان
Maher Mohammed
Department of Accounting, Al-Farahidi University, Baghdad, Iraq
Taif Eyada
Department of Accounting, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :