Inertial Shrinking Projection Algorithm for Relatively Nonexpansive Mappings

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_SCMA-23-1_003

تاریخ نمایه سازی: 15 دی 1404

چکیده مقاله:

This paper introduces an inertial shrinking projection algorithm for approximating fixed points of relatively nonexpansive mappings in uniformly convex and smooth Banach spaces. By incorporating inertial terms, the method improves convergence speed and stability compared to classical projection techniques. The analysis relies on geometric properties such as the Kadec-Klee condition and the continuity of the duality mapping to ensure strong convergence. The proposed algorithm generalizes several existing iterative schemes and operates under mild assumptions. Numerical results in both finite-dimensional and function spaces confirm its practical effectiveness.

نویسندگان

Sattar Alizadeh

Department of Mathematics, Mara. C., Islamic Azad University, Marand, Iran.

Fridoun Moradlou

Department of Mathematics, Sahand University of Technology, Tabriz, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • R.P. Agarwal, D. O’Regan and D.R. Sahu, Fixed Point Theory ...
  • Ya. I. Alber, Metric and generalized projection operators in Banach ...
  • S. Alizadeh and F. Moradlou, Strong convergence theorems for mgeneralized ...
  • S. Alizadeh and F. Moradlou, A strong convergence theorem for ...
  • S. Alizadeh and F. Moradlou, New hybrid method for equilibrium ...
  • S. Alizadeh and F. Moradlou, A monotone hybrid algorithm for ...
  • S. Baiya and K. Ungchittrakool, Modified inertial Mann’s algorithm and ...
  • R.I. Bot, E.R. Csetnek and C. Hendrich, Inertial Douglas–Rachford splitting ...
  • D. Butnariu, S. Reich and A. J. Zaslavski, Asymptotic behavior ...
  • D. Butnariu, S. Reich and A.J. Zaslavski, Weak convergence of ...
  • C.E. Chidume and S.A. Mutangadura, An example on the Mann ...
  • C.E. Chidume, S.I. Ikechukwu and A . Adamu, Inertial algorithm ...
  • W. Cholamjiak, P. Cholamjiak and S. Suantai, An inertial forwardbackward ...
  • Q.L. Dong, H.B. Yuan, Y.J. Cho and Th. M. Rassias, ...
  • A. Genel and J. Lindenstrass, An example concerning fixed points, ...
  • S. Ishikawa, Fixed points by a new iteration method, Proc. ...
  • Z. Jouymandi and F. Moradlou, Retraction algorithms for solving variational ...
  • Z. Jouymandi and F. Moradlou, J-variational inequalities and zeroes of ...
  • Z. Jouymandi and F. Moradlou, Extragradient methods for split feasibility ...
  • Z. Jouymandi and F. Moradlou, Extragradient and linesearch algorithms for ...
  • S. Kamimura and W. Takahashi, Strong convergence of a proximaltype ...
  • D.A. Lorenz and T. Pock, An inertial forward–backward algorithm for ...
  • W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. ...
  • S. Matsushita and W. Takahashi, A strong convergence for relatively ...
  • B. T. Polyak, Some methods of speeding up the convergence ...
  • S. Reich, A weak convergence theorem for the alternating method ...
  • W. Takahashi and K. Zembayashi, Strong convergence theorems by hybrid ...
  • W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems ...
  • W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohoma Publishers, ...
  • W. Takahashi, Fixed point theorems for new nonlinear mappings in ...
  • W. Takahashi and J. -C. Yao, weak convergence theorems for ...
  • W. Takahashi and J.-C. Yao, Strong convergence theorems by hybrid ...
  • S. Treantǎ and S. Singh, Weak sharp solutions associated with ...
  • S. Singh and S. Treantǎ, Characterization results of weak sharp ...
  • نمایش کامل مراجع