Modelling and Optimization of a Two-Bed Silica Gel–Water Adsorption Desalination System Using CFD and Genetic Algorithms
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-45-1_010
تاریخ نمایه سازی: 14 دی 1404
چکیده مقاله:
The operational dynamics of a silica gel–water system with two beds in a single-stage adsorption desalination system were analysed using an enhanced model based on mass and energy conservation principles, incorporating adsorption and desorption kinetics. Computational Fluid Dynamics (CFD) and mathematical modelling were both employed to simulate the processes occurring within a rectangular finned tube bed packed with absorbent materials, such as silica gel. The adsorbent was modelled as a porous solid medium using the Darcy equation, and a lumped-parameter approach was applied to describe heat and mass transfer during the cycle. Simulations were conducted for both adsorption and desorption phases. Model validation showed maximum deviations of ۹.۳% for water uptake and ۴% for bed temperature. To improve system performance, a Genetic Algorithm (GA) was integrated with the mathematical model to optimize key parameters, including cycle time, bed geometry, and fin configuration. The effects of fin pitch and height were specifically investigated, resulting in an optimized water uptake of ۱.۹۸ kg/kg—representing a ۱۲% improvement in adsorption performance and a ۵% increase in the average bed temperature.
کلیدواژه ها:
نویسندگان
Mohamad Hossein Bakhshandeh
Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, I.R. IRAN
Taleb Zarei
Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, I.R. IRAN
Jamshid Khorshidi
Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, I.R. IRAN
Younes Bakhshan
Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, I.R. IRAN
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :